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ABSTRACT 

Anthropomorphic test devices (ATDs) are used to assess vehicle occupant injuries 

during a crash event. In general, the Hybrid III 50th percentile (H350) is used to 

optimise vehicle restraint systems. However, the H350 is developed based on the 

United States population’s anthropometric sizes. Thus, it can be hypothesised that the 

vehicle restraint systems are not optimised for the Malaysian population. The 

hypothesis is supported by studies on the Chinese-size ATD. To explore this issue, it 

is necessary to develop a Hybrid III 50th percentile Malaysian-size (H350M) ATD. 

First, a donor H350 finite element was validated against standard biofidelity response 

corridors. Then, it was scaled using the global scale factor of 0.9437 to meet the 50th 

percentile Malaysian anthropometric sizes. Validations of the H350M were performed 

by using a new set of biofidelity response corridors. After the validation process, the 

H350 and H350M were integrated into a validated vehicle model and restraint systems. 

Simulations of Full-Width Rigid Barrier at 56 km/h (FRB 56 km/h) and Offset 

Deformable Barrier at 64 km/h (ODB 64 km/h) were performed to compare the injuries 

of the H350 and H350M. A total of 12 simulations of frontal crash load cases were 

conducted at various impact speeds from 30 km/h to 64 km/h. Paired t-test indicated 

that H350M 3ms chest acceleration and chest displacement were higher than those of 

the H350 for almost every frontal load case with p-values less than 0.05. This research 

also showed that H350M head acceleration and chest displacement can be reduced by 

5.3g and 1.6 mm, respectively, with the introduction of a new set of restraint system 

parameters. Lastly, a Vehicle Pulse Index with new parameters was proposed. It can 

predict the H350M occupant’s peak chest acceleration by using the vehicle 

acceleration profile as an input, with a root mean square error of 2.86 g. The model 

will help vehicle manufacturers predict occupant responses at the early stage of vehicle 

development. 
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ABSTRAK 

Peranti Ujian Antropomorfik (ATD) digunakan untuk menilai kecederaan penumpang 

semasa kemalangan. Secara umumnya, Hybrid III 50th percentile (H350) ATD 

digunakan untuk mengoptimumkan sistem kekangan kenderaan. Bagaimanapun, H350 

dibangunkan berdasarkan saiz antropometrik rakyat Amerika Syarikat. Oleh itu, boleh 

dihipotesiskan bahawa sistem kekangan kenderaan itu tidak optimum untuk penduduk 

Malaysia. Hipotesis ini disokong oleh kajian terdahulu yang dilakukan pada ATD 

bersaiz rakyat China. Untuk meneroka isu ini, model Hybrid III 50th percentile 

Malaysian size (H350M) perlu dibangunkan. Pertama, model elemen terhingga H350 

perlu memenuhi piawaian koridor tindak balas biofidelity. Kemudian, ia diskalakan 

menggunakan faktor skala global 0.9437 untuk memenuhi saiz 50-persentil rakyat 

Malaysia. Pengesahan pada H350M dilakukan dengan menggunakan koridor tindak 

balas biofidelity yang baharu. Kedua-dua H350 dan H350M dimasukkan ke dalam 

model kenderaan dengan sistem kekangan yang telah disahkan. Simulasi Full-Width 

Rigid Barrier 56 km/j (FRB 56 km/j) dan Offset Deformable Barrier 64km/j (ODB 64 

km/j) dilakukan untuk membandingkan kecederaan antara H350 dan H350M. Dua 

belas kes hentaman hadapan telah disimulasikan pada pelbagai kelajuan dari 30 km/j 

hingga 64 km/j. Paired t-test menunjukkan bahawa pecutan dada 3ms, anjakan dada 

H350M adalah lebih tinggi daripada H350 untuk hampir setiap kes dengan p bernilai 

kurang daripada 0.05. Kajian ini juga membuktikan bahawa pecutan kepala dan 

anjakan dada H350M boleh dikurangkan masing-masing sebanyak 5.3 g dan 1.6 mm 

dengan pengenalan sistem kekangan yang baharu. Akhir sekali, Vehicle Pulse Index 

dengan parameter baharu telah dicadangkan. Ianya boleh meramalkan puncak pecutan 

dada penumpang H350M dengan menggunakan profil pecutan kenderaan sebagai 

input, dengan ralat purata kuasa dua punca sebanyak 2.86 g. Model berangka ini akan 

membantu pengeluar kenderaan tempatan untuk meramalkan tindak balas penumpang 

pada peringkat awal pembangunan kenderaan.
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LIST OF SYMBOLS AND ABBREVIATIONS 

aH - peak head acceleration of H350 

as - peak head acceleration of scaled model 

C - head circumference 

DH - chest displacement of H350 dummy 

Ds - chest displacement of scaled dummy 

FH - reaction force of H350 dummy 

Fs - reaction force of scaled dummy 

L - head length 

MH - neck moment of H350 dummy 

mP - mass of pendulum 

Ms - neck moment of scaled dummy 

mt - mass of thorax assembly 

Ra - 
ratio between peak head accelerations of scaled dummy and 

H350 dummy 

RD - 
ratio between chest displacements of scaled dummy and H350 

dummy 

RF - 
ratio between reaction forces of scaled dummy and H350 

dummy 

RK - 
ratio between thorax stiffness of scaled dummy and H350 

dummy 

RM - 
ratio between neck moments of scaled dummy and H350 

dummy 

RP - 
ratio between pendulum masses for scaled dummy and H350 

dummy 

Rθ - 
ratio between rotation angles of scaled dummy and H350 

dummy 

W - head width 

θH - rotational displacement of H350 dummy 

θS - rotational displacement of scaled dummy 

λ - ratio of size between scaled model and H350 dummy 
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