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ABSTRACT 

Spasticity is a velocity dependent increase in muscle tone triggered by the increased 

excitability of the muscle stretch reflex, which could bring about huge physical and 

emotional impacts on the patients and the family members. The clinical management 

of spasticity is linked to the severity of the spasticity. Thus, an accurate and reliable 

assessment of severity is important. The Modified Ashworth Scale (MAS) is one 

commonly used clinical scale for spasticity assessment based on the resistance against 

passive movement about a joint with varying degrees of velocity. Due to the ambiguity 

of the qualitative description of the MAS, the spasticity assessment can be subjective 

and adequate training is required to ensure interrater reliability. The outcome of this 

research is a smart diagnosis system for upper limb spasticity based on MAS, which 

integrates mechatronics system and data-driven classification model. A 3C Framework 

is designed as the development blueprint for the medical computer-assisted diagnosis 

system, which includes the Conceptualisation, Creation, and Pre-Clinical Validation 

phases. In this work, a clinical database of upper limb spasticity for the Malaysian 

population is developed, and the collected clinical data is used for the development of 

the data-driven classification model. The classification model is supported by 

quantitative measurement data acquired with the data acquisition system from 50 

recruited subjects. Important features as discussed with the physicians were extracted 

from the clinical data, and a Logical SVM-RF classifier is developed. This classifier 

combines the decision-making logic of the physicians and the prowess of different 

machine learning classifiers, achieving a 91% accuracy in diagnosing the subjects of 

6 different MAS levels. This work digitalises the clinical assessment of spasticity as a 

first step towards the integration of artificial intelligence (AI) and data analytics into 

the Malaysian clinical setting. 
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ABSTRAK 

Spastisiti merupakan fenomena peningkatan kekerasan otot yang berlaku akibat 

daripada peningkatan aktiviti refleks regangan otot yang bergantung pada kelajuan 

pergerakan, dan ia boleh membawa kepada kesan fizikal mahupun emosi kepada para 

pesakit dan ahli keluarga mereka. Pengurusan klinikal spastisiti berkait rapat dengan 

tahap keparahannya. Oleh itu, penilaian keparahan spastisiti yang tepat dan boleh 

dipercayai adalah penting. Modified Ashworth Scale (MAS) merupakan satu skala 

klinikal yang biasa digunakan untuk penilaian keparahan spastisiti berdasarkan tahap 

tentangan sesebuah sendi terhadap pergerakan pasif yang dikenakan padanya dengan 

kepelbagaian halaju. Skala MAS mempunyai deskripsi bersifat kualitatif yang 

mengaburkan. Oleh itu, penilaian keparahan spastisiti dengan MAS adalah amat 

subjektif dan memerlukan latihan yang mencukupi untuk memastikan 

kebolehpercayaan keputusan diagnosis antara penilai. Hasil penyelidikan ini adalah 

satu sistem diagnosis pintar untuk spastisiti bahagian atas anggota badan berdasarkan 

MAS, yang merupakan satu kacukan sistem mekatronik dan model klasifikasi 

berasaskan data. Rangka Kerja 3C telah direka sebagai rangka kerja pembangunan 

sistem diagnosis berbantukan komputer, yang merangkumi fasa Konseptualisasi, 

Penciptaan, dan Pengujian Praklinikal. Dalam penyelidikan ini, pangkalan data 

klinikal untuk spastisiti anggota badan atas bagi populasi Malaysia telah dibangunkan, 

dan data tersebut digunakan untuk membangunkan model klasifikasi berasaskan data. 

Model klasifikasi tersebut berasaskan data kuantitatif yang diperoleh daripada 50 

subjek dengan sistem pemerolehan data yang dibangunkan. Ciri-ciri penting seperti 

yang dibincangkan dengan pakar perubatan telah diekstrak daripada data berkenaan, 

dan model pengelas Logik SVM-RF telah dibentuk. Model ini menggabungkan logik 

membuat keputusan pakar perubatan dan kekuatan pelbagai pengklasifikasi, yang 

mencapai ketepatan 91% dalam mendiagnosis subjek daripada 6 tahap MAS berbeza. 

Penyelidikan ini mendigitalkan penilaian klinikal spastisiti sebagai permulaan ke arah 

penyepaduan kecerdasan buatan dan analisis data ke dalam amalan klinikal Malaysia.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vii 
 

 

CONTENTS 

 TITLE i 
 
 DECLARATION ii 

 DEDICATION iii 

 ACKNOWLEDGEMENTS iv 

 ABSTRACT v 

 CONTENTS vii 

 LIST OF TABLES xi 

 LIST OF FIGURES xiii 

 LIST OF SYMBOLS AND ABBREVIATIONS xvii 

 LIST OF APPENDICES xviii 

 INTRODUCTION 1 

  1.1 Background of study 1 

  1.2 Problem statement 3 

  1.3 Objectives 4 

  1.4 Scope 5 

  1.5 Novelty 6 

  1.6 Summary 8 

 LITERATURE REVIEW 9 

  2.1 Introduction 9 

  2.2 Anatomy of human upper limb 9 

  2.3 Spasticity 11 

   2.3.1 Spasticity assessment 13 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



viii 
 

  2.4 Spasticity-related parameters 20 

  2.5 Smart Health 22 

   2.5.1 Artificial Intelligence (AI) in healthcare 23 

   2.5.2 Computer-Assisted Diagnosis (CAD) 25 

   2.5.3 Machine Learning 29 

   2.5.4 Hyperparameters tuning 36 

   2.5.5 Performance metrics 37 

  2.6 Assisted diagnosis for spasticity 40 

  2.7 Development approaches 42 

   2.7.1 Systems engineering 42 

   2.7.2 Data analytics system 46 

  2.8 Summary 51 

 METHODOLOGY 53 

  3.1 Introduction 53 

  3.2 Further Exploratory Research 54 

  3.3 Systematic Framework Development 55 

   3.3.1 Key Questions and Key Elements 55 

   3.3.2 Development Framework 57 

  3.4 Summary 63 

 CONCEPTUAL DESIGN OF UPPER LIMB SPASTICITY 
 SMART DIAGNOSIS SYSTEM  64 

  4.1 Introduction 64 

  4.2 Conversation with End Users 65 

   4.2.1 Identifying the End Users 65 

   4.2.2 Identify Main Aim 66 

   4.2.3 Identify the Clinical Scale or Diagnosis Standard 66 

   4.2.4 Identify Preferred User Interface 68 

  4.3 Analytics Use Case Analysis 69 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



ix 
 

  4.4 Principle Solution 71 

   4.4.1 Environment 72 

   4.4.2 Active structure 73 

  4.5 Summary 75 

 CREATION OF UPPER LIMB SPASTICITY  
 SMART DIAGNOSIS SYSTEM  77 

  5.1 Introduction 77 

  5.2 Clinical Data 78 

   5.2.1 Data Acquisition System 78 

   5.2.2 Clinical Data Collection 80 

  5.3 User Interface Development 92 

   5.3.1 User Interface Views 92 

   5.3.2 User Interface Backend Processes 99 

  5.4 Data-Driven Machine Learning Model Development 111 

   5.4.1 Data Pre-processing 111 

   5.4.2 Data-Driven Classification Model Modelling 134 

  5.5 Summary 156 

 PRE-CLINICAL VALIDATION OF UPPER LIMB 
 SPASTICITY SMART DIAGNOSIS SYSTEM  157 

  6.1 Introduction 157 

  6.2 System Evaluation 158 

   6.2.1 Evaluators 158 

   6.2.2 Evaluation Flow 158 

   6.2.3 Questionnaire 159 

  6.3 Comparison of Conventional and Computer-Assisted  
   Diagnosis Method 165 

  6.4 Summary 166 

 CONCLUSION 167 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



x 
 

  7.1 Conclusion 167 

  7.2 Recommendations 168 

 REFERENCES 170 

 APPENDICES 181 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xi 
 

  

 

LIST OF TABLES 

2.1 The attributes of skeletal muscles 11 

2.2 Grades of Spasticity of Ashworth Scale 15 

2.3 Grades of Spasticity of Modified Ashworth Scale 16 

2.4 Degree of Muscle Tone 19 

2.5 Spasm Frequency Score 19 

2.6 Grades of Spasticity of Modified Modified Ashworth Scale 20 

2.7 The description of expert system and intelligent system 25 

2.8 Application areas of CAD systems in the medical domain 28 

2.9 The 9 Imbalanced Datasets experimented with SMOTE 30 

2.10 Algorithms of Decision Tree 32 

2.11 Performance metrics of Machine Learning models 37 

2.12 The Key Challenges and Derived Key Requirements for  

 Data Analytics Project 50 

3.1 The Key Questions and Key Elements 56 

3.2 Major Parts of Working Systems 62 

4.1 Grades and Descriptions of MAS 66 

4.2 Quantified/Elaborated Description of MAS 67 

4.3 Required Functions for the Interface 68 

4.4 Required Features for the Interface 69 

5.1 Details of Sensors in Data Acquisition System 78 

5.2 Details of Recruited Subjects 90 

5.3 Raw Data and Corresponding Details 92 

5.4 MAS Level and Corresponding Dataset Count 135 

5.5 Train and Test Datasets 135 

5.6 Original Datasets and Oversampled Datasets Count 137 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xii 
 

5.7 Hyperparameters and Corresponding Values for GNB  

 Classifier 139 

5.8 Hyperparameters and Corresponding Values for Decision  

 Tree Classifier 140 

5.9  Hyperparameters and Corresponding Values for Random  

 Forest Classifier 141 

5.10 Hyperparameters and Corresponding Values for XGBoost  

 Classifier 141 

5.11 Hyperparameters and Corresponding Values for SVM  

 Classifier 142 

5.12 Performance of Classifiers on Train Datasets 143 

5.13 Performance of Gaussian Naïve-Bayes Classifier on Test  

 Datasets 146 

5.14 Performance of Decision Tree Classifier on Test Datasets 147 

5.15 Performance of Random Forest Classifier on Test Datasets 148 

5.16 Performance of XGBoost Classifier on Test Datasets 149 

5.17 Performance of SVM Classifier on Test Datasets 150 

5.18 Performance of Combined Classifier on Test Datasets 154 

6.1 Questions and Corresponding Descriptions 159 

6.2 Ratings of the System 162 

6.3 Responses for Open-Ended Questions 163 

6.4 Comparison of Conventional and Computer-Assisted  

 Diagnosis 165 

 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xiii 
 

 

LIST OF FIGURES 

1.1 Novelties of the study 6 

2.1 The bones, joints, and movements of the human upper limb 10 

2.2 Visual representation of Modified Ashworth Scale grades 18 

2.3 Schematic representation of electrophysiological and  

 mechanical relationship at the skeletal muscle 21 

2.4 The graph of AI progress over the years 24 

2.5 Five-Stage Approach of Intelligent CAD System Development 26 

2.6 Types of CAD based on Interpretation Flow 26 

2.7 ImageChecker M1000, the first commercial CAD system 27 

2.8 A Decision Trees sample in deciding whether to wait 31 

2.9 A visual representation of SVM 34 

2.10 An example of non-linearly separable circumstance 35 

2.11 The Visual Representation of the Model Performance  

 Analogy 38 

2.12 Machine used for MSAS evaluation 40 

2.13 Development in Spasticity Assessment since the Introduction  

 of Modified Ashworth Scale 42 

2.14 The four stages of Agile PSS Development Framework 44 

2.15 3-Tier Technology Concept for Smart Rehabilitation System 44 

2.16 The 8-Steps Approach for Agile Innovation 45 

2.17 The Tasks and Outputs of the CRISP-DM Model for each  

 phases 47 

2.18 The Four-Layer Model for the Description of Analytics Case 48 

2.19 The Layers and Procedures for using Analytics Canvas 49 

2.20 Stage Model for the Characterisation of Data Analytics Use Case 49 

2.21 Framework for Data Analytics in Data-driven Product Planning 51 

3.1 Flowchart of the Study 54 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xiv 
 

3.2 3C Framework for Smart Diagnosis System Development 57 

3.3 Tasks and corresponding aspects in Conceptualisation stage 58 

3.4 Tasks and corresponding aspects in Creation stage 61 

3.5 Tasks and corresponding aspects in Pre-Clinical Validation  

 stage 63 

4.1 Conceptualisation – The First Stage of 3C Framework 64 

4.2 Typical procedures and constructs for Analytics Canvas  

 application 69 

4.3 Analytics canvas of upper limb spasticity smart diagnosis  

 system 70 

4.4 Environment model for the principle solution 72 

4.5 Active structure model for the principle solution 74 

5.1 Creation – The Second Stage of 3C Framework 77 

5.2 Sensors of the data acquisition system 79 

5.3 DataLITE PIONEER dongle wireless transceiver 79 

5.4 DataLITE software as the data acquisition terminal 80 

5.5 Flow chart of clinical data collection and assessment stages 81 

5.6 Flowchart of Pre-Assessment Phase 82 

5.7 EMG Sensor Tape and goniometer tape 83 

5.8 Minimum computer specifications for DataLITE operation  

 on a desktop/laptop computer 84 

5.9 Connectivity between the DataLITE sensors and the computer 84 

5.10 The patient’s arm in full-flexed initial position 85 

5.11 Flowchart of Assessment Phase 86 

5.12 Sensors Setup for Assessment Phase 87 

5.13 Sample Page of Graphs for Full Trial (All 6 Stretches) 88 

5.14 Sample Page of Graphs for Each Stretch 89 

5.15 Flowchart of Post-Assessment Phase 90 

5.16 Overview of the GUI pages 93 

5.17 Main Menu view page 93 

5.18 Diagnosis view page 94 

5.19 Express Diagnosis view page 95 

5.20 Instruction view page 96 

5.21 New Patient Registration view page 97 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xv 
 

5.22 Assessment Form: Muscle Power 98 

5.23 Assessment Form: MAS Scale 98 

5.24 Assessment Form: Tardieu Scale 99 

5.25 Functions and Relationship of Code Components of the GUI 100 

5.26 Branches of Patient Data Processing function 101 

5.27 Break down of Patient Data Registration function 101 

5.28 Overview of Sensors Data Processing 102 

5.29 Process Flowchart of “Request to Start Recording” 103 

5.30 Process Flowchart of “Load DLL Function” 104 

5.31 “OnLineGetData” Function Description in DataLITE software 105 

5.32 Process Flowchart of “Obtain Data and Store in Python List” 106 

5.33 “OnlineStatus” Function Description in DataLITE software 107 

5.34 Process Flowchart of “Data Conversion” 107 

5.35 Process Flowchart of “Plot Graph and Select Data” 109 

5.36 Display of the Acquired Data in Graph Form 110 

5.37 Diagnosis Result based on MAS Clinical Scale 111 

5.38 Graph of the Elbow Angle(s) in raw form 112 

5.39 Graph of the Force in raw form 112 

5.40 Graph of the Surface Electromyography in raw form 113 

5.41 Processes from Raw Data to Extracted Features 114 

5.42 Operation for Elbow Angle Data Integration 115 

5.43 Detection of local minima and local maxima of the elbow  

 angle 117 

5.44 Segmented Data of Elbow Angle 118 

5.45 Segmented Data of Elbow Resisting Force 119 

5.46 Segmented Data of Surface Electromyography 119 

5.47 Illustration of nth order time window 120 

5.48 Fix zero data levelling 121 

5.49 Zero mean value data levelling 121 

5.50 Cleaning and Filtering of Elbow Angle Data 122 

5.51 Graph of Elbow Angle before and after pre-processing 123 

5.52 Cleaning and Filtering of Elbow Resisting Force Data 124 

5.53 Graph of Elbow Resistance before and after pre-processing 125 

5.54 Cleaning and Filtering of Surface Electromyography Data 126 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvi 
 

5.55 Graph of Surface EMG before and after pre-processing 127 

5.56 Extracted Features in Jupyter Notebook 132 

5.57 Correlation Heatmap between Features 133 

5.58 Distribution of Datasets 136 

5.59 Hyperparameters Fine-Tuning Processes 138 

5.60 Confusion Matrix of Gaussian Naïve-Bayes Classifier 146 

5.61 Confusion Matrix of Decision Tree Classifier 147 

5.62 Confusion Matrix of Random Forest Classifier 148 

5.63 Confusion Matrix of XGBoost Classifier 149 

5.64 Confusion Matrix of SVM Classifier 150 

5.65 Flowchart of Classification Process 152 

5.66 Confusion Matrix of Logical SVM-RF Classifier 153 

5.67 Comparison of Individual Classifiers with Logical SVM-RF  

 Classifier 155 

5.68 GUI of Diagnosis Result with Supporting Information 156 

6.1 Pre-Clinical Validation – The Third Stage of 3C Framework 157 

6.2 Evaluation Flow of Pre-clinical Validation 158 

6.3 Responses of Evaluator 1 161 

6.4 Responses of Evaluator 2 161 

6.5 Responses of Evaluator 3 162 PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvii 
 

s 

LIST OF SYMBOLS AND ABBREVIATIONS 

θelbow - Elbow angle 

AI - Artificial Intelligence 

ANN - Artificial Neural Network 

API - Application Programming Interface 

AS - Ashworth Scale 

CAD - Computer-assisted diagnosis 

CART - Classification and Regression Trees 

DLL - Dynamic Link Library 

DT - Decision Tree 

EMG - Electromyography 

GUI - Graphical user interface 

MAS - Modified Ashworth Scale 

MMSE - Mini-Mental State Examination 

MTS - Modified Tardieu Scale 

NINDS - National Institute of Neurological Disorders and Stroke 

PWD - Person with disabilities 

RF - Random Forest 

ROM - Range of Motion 

SCI - Spinal cord injury 

sEMG - Surface electromyography 

SVM - Support Vector Machine 

TS - Tardieu Scale 

UiTM - Universiti Teknologi MARA 

ULS - Upper limb spasticity 

UPSC - UiTM Private Specialist Centre 

USA - United States of America 

WHO - World Health Organization  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xviii 
 

 

LIST OF APPENDICES 

 

APPENDIX TITLE  PAGE 

    

A Ethics Approval of UiTM Research Ethics 
Committee 

 
182 

B Consultant Rehabilitation Physiciancs  183 
C Evaluators  184 
D Clinical Data  185 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 
 

 

 

 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of study 

 

Spasticity is a velocity dependent increase in muscle tone triggered by the increased 

excitability of the muscle stretch reflex. According to the National Institute of 

Neurological Disorders and Stroke (NINDS) of the United States of America (USA), 

spasticity is the condition of abnormal increment in muscle tone or stiffness that might 

induce pain or discomfort by interfering in the movement or speech of a normal human 

being [1]. Clinically, spasticity manifests as an increased resistance or muscle tone by 

muscles during passive stretching or lengthening [2]. Spasticity is common among 

patients with conditions such as brain injury, cerebral palsy, multiple sclerosis, spinal 

cord injury (SCI) and stroke. 

 Spasticity could cause huge physical and emotional impacts on the patients and 

the family members. Physically, spasticity could cause discomfort and stiffness, while 

spasms can be annoying and painful, and may disrupt motor function [3]. Besides the 

physical activities, the presence of spasticity and spasms could cause emotional impact 

on the patients. For instance, the localisation of spasticity in both legs or the right arm 

can produce a significant impact on “Need for Assistance/ Positioning” and “Social 

Embarrassment” [4]. 

The clinical management of spasticity is linked to the severity of the spasticity, 

and thus the reduction of personal and societal impact of a spasticity subject lies in the 

accurate assessment that precedes the rehabilitation intervention. However, an 

accurate and reliable assessment of severity is in itself a challenging area [3]. There 

are ongoing research activities into different assessment strategies, including gait 
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analysis and biomechanical, neurophysiological, and clinical measurements. The 

provision of rehabilitation services requires a multidisciplinary team led by a 

rehabilitation physician. The shortage of rehabilitation professionals and the limitation 

of rehabilitation facility is hindering optimal rehabilitation service provision in 

Malaysia. There are only 84 rehabilitation physicians in a country of 32 million. The 

welfare department recorded 453,258 registered persons with disabilities (PWD) in 

2017 [5]. This number is clearly under reported of actual numbers. Thus, the patients 

in rural areas face issues in accessing rehabilitation facilities which are confined to the 

big cities. To tackle this urgency, there are growing appeals for the digitisation of 

rehabilitation services. 

In the current clinical practice, the more commonly used assessment scales are 

the Ashworth Scale (AS) or Modified Ashworth Scale (MAS) [6], and MAS is also 

the most cited scale in the literature [7]. The MAS classify the severity level of 

spasticity based on the resistance against passive movement about a joint with varying 

degrees of velocity. The MAS grades range from 0 to 4, with six severity grades: 0, 1, 

1+, 2, 3, and 4. The shortcoming of the mentioned assessment scale is its qualitative 

nature as opposed to quantified figures and numbers. The therapist will diagnose the 

severity level of the spasticity level based on one’s interpretation of the stated 

definition and experience [8], and resulting in the interrater and intrarater variability 

as compiled in [9]. The key problem with this approach is the reliability on one’s 

experience rather than universally accepted standard. 

In Malaysian clinical practice, the occupational therapist or physiotherapist 

diagnoses the severity level of the spasticity based on experience and qualitative scale 

of MAS. The MAS assessment of the therapists are heavily influenced by subjective 

feeling instead of measurable and quantified value. Rehabilitation physicians and 

therapists diagnose the severity level of spasticity based on experience and 

interpretation of the stated definition of MAS, resulting in the lack of consistency and 

the interrater (more than one observer) and intrarater (within an individual observer) 

variability. Current clinical practice utilises a conventional goniometer to determine 

the range of motion (ROM) and the catch angle of the patients’ spastic arm. Data are 

recorded manually on papers. Such data is often managed individually and not 

convenient to be shared among clinics. 

In this course of digitisation, the advancement of the computing power and 

artificial intelligence can be leveraged to improve the diagnosis accuracy of a patient, 
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and the same can be done on a patient with spasticity. With the assistance of a 

mechatronics system consisting of corresponding sensors and artificial intelligence, 

the diagnosis of spasticity can be quantified, and its severity level based on clinical 

scales can be predicted by a computer model trained with real life clinical data. 

 

1.2 Problem statement 

 

Based on the available literatures, there are several data collection attempts for 

spasticity both within and outside Malaysia for the purpose of computer-assisted 

diagnosis. The parameters collected include the kinematic and kinetic aspects such as 

the joint angle, joint movement velocity, and joint torque in action. None of the studies 

mention about the inclusion of electromyography (EMG) in their attempts, even 

though EMG has been proven as highly correlated to AS and MAS clinical scales. 

Zooming into the rehabilitation scene in Malaysia, none of the clinical data collected 

has complete MAS clinical spectrum from MAS level 0 to level 4, and they are also 

not publicly accessible for the utilisation in improving the rehabilitation healthcare 

scene of Malaysia. 

 The spasticity severity level of the patients acts as a guideline for the 

prescription of medication and physical rehabilitation routine by the medical personnel. 

Hence, the precision and accuracy of spasticity severity level assessment is essential 

for the wellbeing of the patients and lowering the overall negative impact to the society. 

With the collected clinical data, the research teams attempt to utilise machine learning 

and deep learning in assisting the diagnosis of spasticity. However, the literatures show 

that none of the attempts are aiming to diagnose the full spectrum but only parts of the 

spasticity clinical scale. All the attempts of computer-assisted diagnosis based on MAS 

clinical scale have excluded at least one of the MAS levels in their studies. A data-

driven assisted-diagnosis model which covers all the MAS levels is still a gap to be 

filled in if there is a serious attempt in digitalising the diagnosis of spasticity. 

On top of that, the development of a mechatronics system requires a proper 

framework and guideline. This is especially true for a computer-assisted diagnosis 

(CAD) system, as it involves multiple stakeholders and users including the patients 

itself. There are various frameworks for the development of data analytics projects or 

mechatronic systems, yet there is not any properly drafted framework for the 
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development of a computer-assisted diagnosis system which is a mixture of both 

systems specially for the assisted medical diagnosis purpose. 

 

1.3 Objectives 

 

The main aim of this study is to develop a clinically compliant smart diagnosis system 

for upper limb spasticity. In short, this work aims to reduce the interrater and intrarater 

variability of spasticity assessment by the proper quantification of the qualitative 

description of MAS, and the training of computer system to identify and imitate the 

decision-making process of medical expert. 

 The aim of this work is broken down into clearer and more discrete objectives 

below: 

i. To establish a quantitative clinical database for upper limb spasticity of 

Malaysian patients containing kinematics, kinetics, and physiological data. 

ii. To develop data-driven machine learning model for severity level 

classification of upper limb spasticity. 

iii. To design a complete framework for the development of computer-assisted 

diagnosis system. 

  

 The first objective is to establish a quantitative clinical database for upper limb 

spasticity of Malaysian patients which contains kinematics, kinetics, and physiological 

data. This clinical database contains all the relevant information of the spasticity which 

includes elbow angle, elbow resisting force, and bicep surface electromyography 

(sEMG). There is no publicly available existing clinical database for Malaysian 

patients which contains all the vital information for the development of a data-driven 

machine learning classification model. 

 The second objective is the development of a data-driven machine learning 

model which can diagnose the upper limb spasticity severity level. This algorithm is a 

crucial part of the smart diagnosis system, and there is no available algorithm 

anywhere which covers the classification of upper limb spasticity for the whole MAS 

clinical scale spectrum. 

 The third objective is the design of a development framework for the creation 

of a computer-assisted diagnosis system. The development of a mechatronics system 

requires a proper and systematic guideline to prevent the uncoordinated and messy 
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development process. A proper development framework for computer-assisted 

diagnosis system could reduce the miscommunication and time-required during the 

development process. 

 

1.4 Scope 

 

To produce a specialised study on this topic, the scope of this work has been limited 

to the constraints listed below: 

i. The clinical compliance of the developed system lies in the usage of the 

clinical data and the MAS clinical scale in the system, and the usage of the 

system fits into the current clinical practice. 

ii. The smartness of the developed system lies in the automatic classification 

of the upper limb spasticity severity level provided by the developed data-

driven machine learning classification algorithm. 

iii. The focus of the study will be spasticity occurs in the upper extremities, 

which is known as upper limb spasticity. 

iv. The main parameters for the diagnosis are the elbow angle, elbow force, 

and surface electromyography (sEMG) of bicep. 

v. The development of the data processing pipeline and the Machine Learning 

model is performed in the Python language. 

vi. The clinical assessment scale used for the assessment of upper limb 

spasticity severity level is Modified Ashworth Scale (MAS). 

vii. The severity levels for the classification are the MAS 0, MAS 1, MAS 1+, 

MAS 2, MAS 3, and MAS 4. 

viii. The inclusion criteria of patients are: 

a. Presence of any central nervous system pathology. 

b. Good cognitive function determined by Mini-Mental State 

Examination (MMSE) with a score ≤ 24. 

ix. The exclusion criteria of patients are: 

a. Elbow joint or forearm pathology secondary to the non-neurological 

cause. 

b. Presence of elbow joint contracture secondary to bone pathology. 

x. The developed framework is for the development of medical computer-

assisted diagnosis system. 
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xi. The developed framework/system is for Proof of Concept (PoC) purpose, 

which ends at the pre-clinical validation phase with the clinicians. 

 

1.5 Novelty 

 

The main objective of this study is the development of a clinically compliant smart 

diagnosis system for upper limb spasticity, which is to assist the clinicians diagnosing 

the upper limb spasticity. The main novelty of this work is the completion of a 

computer-assisted diagnosis system for upper limb spasticity based on MAS and 

comprises all the six MAS levels, which could revolutionise the current clinical 

practice in Malaysia in the upper limb spasticity diagnosis. This main novelty 

encompasses three sub-novelties under its umbrella, which come along during the 

development process. The details of the novelty are summarised in Figure 1.1. 

 
Figure 1.1: Novelties of the study 

 

 This work involves the development of a local clinical database of upper limb 

spasticity for the Malaysian population. The clinical database includes the time-series 

data of the patients’ spastic arm for elbow angular motion, elbow resisting force, and 

the sEMG of bicep. The establishing of such clinical database can be used for future 

reference to enhance the healthcare quality of the medical and rehabilitation experts in 

Malaysia. The clinical database can serve as a foundation, and the data collected in the 

future can increase and expand the clinical database. The processes involved in 
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establishing the clinical database includes: the development and integration of sensors 

into a data collection system, the proper design of data collection phases, and the 

clinical data collection sessions conducted by the certified clinicians at UiTM Private 

Specialist Centre (UPSC). 

Additionally, this work includes the development of a data-driven 

classification model based on conventional algorithms and logical decision-making 

process. The classification model combines the strength of individual classifiers on 

specific MAS Level and the decision-making logic of medical expert in upper limb 

spasticity diagnosis. The classifiers include the Random Forest (RF) algorithm and 

Support Vector Machine (SVM). It is known that one team in Korea carried out a 

similar research by using artificial neural network (ANN) for the purpose of 

identifying and imitating the MAS clinical assessment of spasticity in the diagnosis 

process [10], though only for MAS Level 0 to 3. The developed classifier includes a 

logical flow of the mentioned conventional classifiers and some logic rules to 

determine the spasticity severity level based on MAS clinical assessment scale. The 

data-driven classification model development process involves the data processing 

pipeline to extract important features from the data for the training of different 

classifiers before the classifiers are combined for classification performance 

enhancement. The features for the model training are determined with the inputs from 

the medical expert, thus making it a medical expert system. 

Development of a medical computer-assisted diagnosis system includes the 

systems engineering of a mechatronics system with the integration of data analytics 

project. There are different systems engineering approaches and frameworks available 

for the development of mechatronics system or data analytics project. However, none 

of the frameworks could serve as a development blueprint for a smart diagnosis system 

(or computer-assisted diagnosis system). This study provides a framework with the 

name of 3C Development Framework, which is the short form for Conceptualisation, 

Creation, and Pre-Clinical Validation. The framework is designed in such a way that 

it encompasses the important phases in the design and deployment of a computer-

assisted diagnosis system in a clinical setting. The framework starts with the 

conceptualisation of the whole system and ends with the pre-clinical validation and 

verification by licensed clinicians. Several existing tools or canvases are employed in 

the framework as they have been tested and validated. The development framework 

involves the consultation of important stakeholders, especially the voice of the end 
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