
MODELLING AND SIMULATION OF MULTI-SAMPLING DEADBEAT 

CURRENT CONTROLLER WITH TIME-DELAY COMPENSATION FOR GRID-

CONNECTED INVERTER  

GARBA ELHASSAN 

A thesis submitted in 

fulfillment of the requirement for the award of the 

Doctor of Philosophy in Electrical Engineering 

Faculty of Electrical and Electronic Engineering 

Universiti Tun Hussein Onn Malaysia 

SEPTEMBER 2023 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iii 
 

DEDICATION 

I dedicate this work to my beloved parents, my beloved wife, and children. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv 
 

ACKNOWLEDGEMENT 

In the name of ALLAH, the most Gracious and the Most Merciful. Alhamdulillah, all 

praise to Allah Almighty for His grace and His blessings given to me for the 

completion of my PhD studies successfully.  

I also wish to express my gratitude to my supervisor, Assoc. Prof. Dr. Shamsul 

Aizam bin Zulkifli, for his guidance, invaluable help, advice, and patience on my 

project research. Without his constructive and critical comments and his continued 

encouragement and good humour when I was facing difficulties, I could have not 

completed this research. I am also very grateful to him for guiding me to think critically 

and independently.  

I acknowledge, with many thanks, the National Space Research and 

Development Agency for the financial support.  

Furthermore, I wish to express my sincere gratitude to my mother for her moral 

support and prayers. Last but not the least, a special thanks to my beloved wife, Aisha, 

for her support, endless encouragement, prayers, and love; also, to my children, Adnan, 

Ammar, Anwar, and Aadeel, I want to say thanks for your patience throughout my 

studies period. 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



v 
 

ABSTRACT 

Digital controller realisations suffer from a phase lag induced by time delay. This 

phase lag makes it hard for inverter controller to maintain stability and robustness, 

especially during grid-impedance perturbations. This research aims at mitigating the 

inherent one-sampling-period delay associated with deadbeat current control without 

requiring an anti-aliasing filter. First, a deadbeat current controller was modelled with 

the right tuning polynomial and with the caution of not cancelling the poles and zeroes 

to improve the performance of the system, as well as its resilience against parameter 

variation. The designed controllers were tested using Nyquist and Bode plots, and their 

responses were acceptable with the control margin stability. In the second part, time 

delay condition has been added to the model to mimic the real delay and a quadruple-

sampling deadbeat current controller was modelled, which reduced the one-sampling-

period delay of the traditional deadbeat current controller to 
1

4
 sampling period. This 

time-delay mitigation improved the bandwidth of the controller, as well as reduced the 

total harmonics injected into the grid. In the last part, a comparison between the 

performances of the proposed quadruple-sampling deadbeat current controller and the 

conventional proportional-integral controller was intuitively carried out using the same 

simulation setup. The proposed method achieved an improvement of 120 µs from that 

of the Proportional Integral (PI) current controller. In terms of Total Harmonic 

Distortion (THD), the quadruple-sampling design method exhibited 1.01% in THD 

current and 0.12% in THD voltage as compared to the PI controller with 4.03% and 

0.18% in current and voltage THDs, respectively. Finally, the two controllers were 

compare subjected to grid parameter variation of 40% and 80% and from the results 

obtained, the quadruple-sampling design method displayed good current tracking, 

improve time-delay compensation, and robustness against parameter variation.  
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ABSTRAK 

Realisasi pengawal digital mengalami ketinggalan fasa yang disebabkan oleh 

kelewatan masa digital. Selang fasa ini menyukarkan pengawal penyongsang untuk 

mengekalkan kestabilan dan keteguhan, terutamanya semasa gangguan pada talian 

impedan grid. Projek ini bertujuan untuk mengurangkan kelewatan tempoh satu 

persampelan yang dikaitkan dengan kawalan arus kematian denyut tanpa memerlukan 

penapis anti-aliasing. Pertama, pengawal arus kematian denyut dimodelkan dengan 

polinomial penalaan yang betul dan dengan berhati-hati untuk tidak membatalkan 

kutub dan sifar untuk meningkatkan prestasi system penukar grid, serta daya tahannya 

terhadap variasi parameter. Pengawal yang direka telah diuji menggunakan plot 

Nyquist dan Bode, dan respons mereka adalah didalam julat pengawalan stabili. Dalam 

bahagian kedua, keadaan kelewatan masa telah ditambahkan pada model untuk meniru 

kelewatan sebenar dan pengawal arus kematian denyut  bagi pensampelan empat kali 

ganda telah dimodelkan, yang mengurangkan kelewatan tempoh satu persampelan 

pengawal arus kematian denyut tradisional kepada 1/4 pensampelan tempoh. 

Pengurangan kelewatan masa ini akan meningkatkan lebar jalur pengawal, serta 

jumlah harmonik yang disuntik ke dalam elektrik grid. Pada bahagian terakhir, 

perbandingan antara prestasi pengawal arus kematian denyut pensampelan empat kali 

yang dicadangkan dan pengawal kamiran berkadar (PI) konvensional telah dijalankan 

secara intuitif menggunakan persediaan simulasi yang sama. Kaedah yang 

dicadangkan mencapai peningkatan 120 µs daripada pengawal arus PI. Dari segi 

jumlah herotan harmonik (THD), kaedah reka bentuk pensampelan empat kali ganda 

menunjukkan 1.01% dalam THD arus semasa dan 0.12% dalam THD voltan 

berbanding dengan pengawal PI dengan 4.03% dan 0.18% dalam THD semasa dan 

voltan, masing-masing. Akhirnya, kedua-dua pengawal dibandingkan tertakluk 

kepada variasi parameter grid sebanyak 40% dan 80% dan daripada keputusan yang 

diperoleh, kaedah reka bentuk pensampelan empat kali ganda memaparkan 
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pengesanan arus yang baik, pampasan kelewatan masa yang luar biasa, dan keteguhan 

terhadap variasi parameter. 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



viii 
 

CONTENTS 

TITLE i 

DECLARATION ii 

DEDICATION  iii 

ACKNOWLEDGEMENT  iv 

ABSTRACT   v 

ABSTRAK   vi 

CONTENTS   viii 

LIST OF TABLES  xii 

LIST OF FIGURES  xiii 

LIST OF SYMBOLS AND ABBREVIATIONS  xiv 

LIST OF APPENDICES  xviii 

CHAPTER 1 INTRODUCTION  1 

1.1 Research background   1 

1.2 Problem statement   4 

1.3 Aim   5 

1.4 Objectives   5 

1.5 Scope of research   6 

1.6 Contribution of the research  6 

1.7 Outline of thesis   7 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



ix 
 

CHAPTER 2 LITERATURE REVIEW  8 

2.1 Introduction   8 

2.2 Overview of grid-connected inverters  8 

2.2.1 Grid synchronisation with inverter  10 

2.2.2 Digital control in grid-connected inverter  11 

2.2.3 Primary controller for grid-connected 

inverter  12 

2.2.4 Secondary controller for grid-connected 

inverter  13 

2.2.5 Digital pulse-width modulator (DPWM) 

for grid-connected inverter  13 

2.2.6 Time delay in the control loop of grid-

connected inverter  14 

2.2.6.1 Shifting the sampling and updating 

compensation techniques  15 

2.2.6.2 Model-based time delay 

compensation techniques  16 

2.3 Research gap analysis   17 

2.4 Detailed literature review of published papers  19 

2.4.1 Paper 1: Comprehensive review on time-

delay compensation techniques for grid-

connected inverters  19 

2.4.2 Paper 2: Deadbeat current control in grid-

connected inverters: A comprehensive 

discussion  23 

2.4.3 Paper 3: Investigation on multi-sampling 

deadbeat current control with time-delay 

compensation in grid-connected inverter  26 

2.4.4 Paper 4: Comparison between quadruple-

sampled state-variable-derivative deadbeat 

current controller with PI current controller 

in grid-connected inverter  27 

2.5 Summary   28 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



x 
 

CHAPTER 3 RESEARCH METHODOLOGY  29 

3.1 Introduction   29 

3.2 Time delay condition modelling  29 

3.3 Overall research design for deadbeat current control 

with time delay for grid-connected inverter system  31 

3.4 Design of a deadbeat current controller in order to 

improve current and voltage performance of grid-

connected inverter   33 

3.4.1  Pole-zero cancellation approach  35 

3.4.2 Factorization (polynomial) deadbeat 

control approach  37 

3.4.3 State-variable derivation (Pole placement 

technique)  38 

3.4.4 Hybrid DBC design approach  40 

3.4.5 Robust deadbeat control design approach  42 

3.5 Designing multi-sampling deadbeat current controller 

to minimise one-sampling-period delay inherent in 

deadbeat controller for grid-connected inverter 

application   46 

3.5.1 Pole-zero-cancellation non-minimum 

realisation (PZCNR) approach  48 

3.5.2 Pole-zero-cancellation minimum 

realisation (PZCMR) approach  49 

3.5.3 Polynomial (Factorization/Ripple-free) 

deadbeat control approach  49 

3.5.4 Pole placement technique (State-variable 

derivation)  50 

3.5.5 Hybrid deadbeat controller using state-

space design approach  51 

3.6 Comparison on the performance improvement 

between the proposed quadruple-sampling deadbeat 

current controller with the performance of 

conventional PI-based current controller  56 

3.7 Summary   57 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xi 
 

CHAPTER 4 A COMPREHENSIVE REVIEW ON TIME-DELAY 

COMPENSATION TECHNIQUES FOR GRID-

CONNECTED INVERTER  58 

CHAPTER 5 DEADBEAT CURRENT CONTROLLER IN GRID 

CONNECTED INVERTERS: A COMPREHENSIVE 

DISCUSSION  75 

CHAPTER 6 INVESTIGATION ON MULTI-SAMPLING 

DEADBEAT CURRENT CONTROL WITH TIME-

DELAY COMPENSATION IN GRID-CONNECTED 

INVERTER  101 

CHAPTER 7 COMPARISON BETWEEN QUADRUPLE-SAMPLED 

STATE-VARIABLE-DERIVATIVE DEADBEAT 

CURRENT CONTROLLER WITH PI CURRENT 

CONTROLLER IN GRID-CONNECTED INVERTER  118 

CHAPTER 8 CONCLUSION  129 

8.1 Conclusion   129 

8.2 Recommendations for future works  131 

 REFERENCES  132 

APPENDICES        146 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xii 
 

LIST OF TABLES 

2.1 Research gap analysis  18 

2.2 Summary of different sampling and updating 

techniques  21 

2.3 Summary of DBC considering time-delay effect  22 

2.4 Stability parameters at different grid-impedance 

variations  25 

2.5 Summary of I_THD and V_THD at different grid 

impedances with time-delay compensation  27 

3.1 Proposed inverter’s parameters  34 

3.2 THD and time delay parameters  56 

 

 PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xiii 
 

LIST OF FIGURES 

2.1 Block diagram of typical grid-connected inverter 

system with interface inductor  9 

2.2 PLL block diagram  11 

2.3 Primary and secondary controllers for grid-connected 

inverter  13 

2.4 Common time delay compensation techniques  14 

2.5 Signal response (a); Single updating, (b); Double 

updating, (c); Multi-updating  16 

2.6 Multi-sampling and updating  20 

3.1 PWM sampling(a) Sampling, (b) updating, and (c) 

firing signals  30 

3.2  Actively damped plant model with time delays 

updating, and (c) firing signals  31 

3.3 Flowchart of methodology  32 

3.4  Schematic diagram of proposed system 33 

3.5 Discrete-time unity-feedback control system  35 

3.6  Block diagram of SVDA. 39 

3.7  Block diagram of Hybrid DBC  41 

3.8. Closed-loop control system with pre-filter and bridged-

T controller 43 

3.9  Flowchart of Objective 1 45 

3.10  Digital implementation blocks  46 

3.11  Model of multi-sampling with ZOH circuit  47 

3.12 Flowchart of Objective 2  53 

3.13 Quadruple sampling and updating time delay 

compensation method  54 

3.14 Digital implementation blocks  55 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741366
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741366
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741367
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741368
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741368
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741369
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741370
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741370
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741371
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741375
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741375
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741376
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741376
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741377
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741378
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741379
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741380
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741381
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741382
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741382
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741383
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741384
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741385
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741386
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741387
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741387
file:///D:/Formatting/2023%20Sept/03%20uthm/Thesis%20UTHM%20_edited%204.docx%23_Toc144741388


xiv 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

𝑃𝑚 ‒ Phase margin 

𝑊𝑝𝑐 ‒ Phase cross-over frequency  

𝑊𝑔𝑐 ‒ Gain cross-over frequency 

𝑓𝑠 ‒ Switching frequency 

𝑓𝑠𝑤 ‒ Sampling frequency 

𝑈𝑑𝑐 ‒ DC-link voltage 

𝐿𝑔𝑠 ‒ Grid impedance 

𝐿𝑖 ‒ Inverter-side inductor 

𝐿𝑔 ‒ Grid-side inductor 

𝑈𝑔 ‒ Grid nominal voltage 

𝐶𝑓 ‒ Filter capacitance 

𝑘𝑑 ‒ Damping factor of capacitor current 

𝜁 ‒ Damping ratio 

𝑇𝑆 ‒ Sampling period 

𝐴(𝑧)
+ 𝑎𝑛𝑑 𝐵(𝑧)

+ ‒ Poles and zeros inside unit circle  

𝐴(𝑧)
− and 𝐵(𝑧)

− ‒ Poles and zeros outside unit circle 

𝑧−𝑑 ‒ Inherent delay in plant 

𝐾𝑝𝑤𝑚 ‒ Gain of full-bridge three-phase inverter 

𝐼𝑑𝐼𝑞𝑟𝑒𝑓
 ‒ Direct-quadrature reference current 

𝐼𝑑𝐼𝑞𝑀
 ‒ Measured direct-quadrature current 

𝑈𝑉1𝑎𝑏𝑐
 ‒ Control voltage 

𝑈𝑉2𝑎𝑏𝑐
 ‒ Feed-forward voltage 

𝑉𝐷𝑐𝑀
 ‒ Measured DC voltage 

𝑉𝐷𝑐𝑅𝑒𝑓
 ‒ Reference DC voltage 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xv 
 

𝑈𝑉𝑃𝐶𝐶
 ‒ Feed-forward voltage from point of common 

coupling 

𝑚𝑠 ‒ Single-update PWM wave 

𝑉𝑖𝑎𝑏𝑐 ‒ Inverter-side three-phase voltage 

𝑉𝑐𝑎𝑏𝑐 ‒ Capacitor-side three-phase voltage 

𝑉𝑔𝑎𝑏𝑐 ‒ Grid-side three-phase voltage 

 𝑓𝑟 ‒ Resonance frequency  

𝑓𝑠 ‒ State-variable sampling frequency  

𝑇𝑑 ‒ Maximum time delay 

𝑓𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ‒ Critical frequency 

𝑃 ‒ Active power 

𝑄 ‒ Reactive power 

DG ‒ Distributed generation 

GCI ‒ Grid-connected inverter 

MG ‒ Microgrid 

LCL ‒ Inductor-capacitor-inductor 

VSI ‒ Voltage-source inverter 

MB ‒ Model-based 

MF ‒ Model-free 

SP ‒ Smith predictor 

MSP ‒ Modified Smith predictor 

DBC ‒ Deadbeat controller  

MPC ‒ Model predictive controller 

DT ‒ Damping techniques 

FBT ‒ Filter-based techniques  

SSI ‒ Shifting sampling instant 

FPGA ‒ Field-programmable gate array  

DPWM ‒ Digital pulse-width modulation 

L ‒ Inductor 

LC ‒ Inductor-capacitor 

PI ‒ Proportional-integral 

N/A ‒ Not applicable 

I ‒ Current  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvi 
 

V ‒ Voltage 

SL ‒ Single loop 

DL ‒ Double loop 

DSDU ‒ Double-sampling double-updating technique 

QSQU ‒ Quadruple-sampling quadruple-updating 

technique 

MSMU ‒ Multi-sampling multi-updating technique 

ICF ‒ Inverter-side current feedback 

GCF ‒ Grid-side current feedback 

CCF ‒ Capacitor current feedback 

SOGI ‒ Second-order generalised integrators 

QRCT ‒ Quasi-resonant component technique 

ESRT ‒ Extending stable region technique 

GVFF ‒ Grid voltage feed-forward 

CVFF ‒ Capacitor voltage feed-forward 

PR ‒ Proportional-resonant 

SLDAT ‒ Single-loop delay addition techniques 

SLDT ‒ Single-loop damping techniques 

SO ‒ State observer 

QPI ‒ Quasi-proportional-integral 

WFP ‒ Weighted filter predictor 

SSITUT ‒ Shifting sampling instant toward PWM 

update time 

UIAC ‒ Update immediately after calculation finished 

TCS ‒ Triangular carrier signal  

PCCs ‒ Predictive current controllers  

Ή∞ ‒ H-infinity 

LPF ‒ Low-pass filter 

DSPs ‒ Digital signal processors  

LP ‒ Linear predictor 

ANN ‒ Artificial neural network 

TNE ‒ Techniques not explicit  

NCO ‒ Natural current observer 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvii 
 

THD ‒ Total harmonic distortion  

GCV ‒ Grid current variation 

FIV ‒ Filter inductance variation 

GVV ‒ Grid voltage variation 

PV ‒ Power variation 

GIV ‒ Grid impedance variation 

MM ‒ Model mismatch 

DBCC ‒ Deadbeat current control  

IIV ‒ Inverter-side inductance variation 

LIV ‒ Load inductance variation 

LRV ‒ Load resistant variation 

FCV ‒ Filter capacitance variation  

BEMF ‒ Back EMF 

PRCV ‒ Phase reference current variation 

ARCV ‒ Amplitude reference current variation 

GSC ‒ Grid short circuit 

HIC ‒ High inrush current 

PJ ‒ Phase jump 

PE ‒ Power error 

PAS ‒ Power angular shift 

PZCA ‒ Pole-zero cancellation approach 

FRA ‒ Factorisation approach  

SVDA ‒ State-variable derivation approach 

HBDA ‒ Hybrid design approach 

RCA ‒ Robust control approach  

ODA ‒ Other DBC design approaches  

SVPWM ‒ Space vector pulse-width modulation  

QSSVDDCC ‒ Quadruple-sampling state-variable-derivative 

deadbeat current controller  

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xviii 
 

LIST OF APPENDICES 

APPENDIX TITLE  PAGE 

A Simulation diagram  146 

B MATLAB code  148 

C LCL filter design  152 

D Discretisation of plan transfer function  156 

E List of publications  159 

F VITA  161 

 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 

CHAPTER 1 

INTRODUCTION 

1.1 Research background 

The majority of the world’s existing energy needs are met by conventional forms of 

energy. There are scarce reserves of these resources on earth. Factors such as pollution, 

CO2 emissions, and global warming degrade the environment. Consequently, 

renewable energy sources are increasingly becoming popular in the modern world. 

Among all renewable power sources, solar energy receives the most attention as the 

best replacement for conventional energy due to the source’s accessibility. Technical 

advancements in solar energy systems make their implementation viable in a variety 

of applications.  

Inverters are a major element of a photovoltaic (PV) system connected to the 

electrical grid. It changes DC energy generated by solar panels into grid-compatible 

AC power. In terms of architecture, the three primary inverter topologies are the 

central inverter, string/multi-string inverter, and module-integrated microinverter [1]. 

Topologies with a centralised inverter are typically chosen for large-scale power 

generation, since they have a common maximum power point tracking (MPPT) and a 

centralised inverter connected to PV arrays (series-parallel connection of PV 

modules). The string inverter topology is a scaled-down variant of the central inverter 

architecture, in which a certain number of modules are connected in series (string), and 

the inverter that is attached to that string is referred to as the string inverter [2], [3]. In 

this topology, each string has its own MPPT. The multi-string topology is an evolution 

of the string inverter design for larger systems. In this design, each string is equipped 

with its own DC-DC converter, and all of the strings are connected to a single inverter. 
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Lastly, there is the module-integrated microinverter, in which each PV module is 

equipped with its own inverter and an individual MPPT [4], [5]. All these inverter 

topologies can take current or voltage as input; when current is used, the inverter is 

referred to as a current-source inverter, and when voltage is used, it is referred to as a 

voltage-source inverter.  

In grid-connected inverter applications, traditional controllers are primarily 

proportional-integral-derivative (PID) and hysteresis controllers[6]. PID controllers 

are used to control the inverter's output voltage and frequency to match the grid voltage 

and frequency. The controller continuously changes the inverter output based on the 

difference between the desired and actual output [7]. Hysteresis controllers move 

between two voltage levels to adjust the output voltage of an inverter. A hysteresis 

band, which is a range of values specified by an upper and lower limit, is used to flip 

between the two levels [8]. When the grid voltage passes the upper or lower limit of 

the hysteresis band, the controller switches the inverter output between the two voltage 

levels. Because of their simplicity and resilience, both of these controllers have been 

frequently employed in grid-connected inverter applications [9]. More advanced 

control methods, such as model predictive control (MPC) and sliding mode control 

(SMC), and deadbeat control have been developed and are being employed in some 

applications to improve performance and efficiency of the inverter connected to the 

grid. 

Deadbeat current control is one of the modern control methods used in grid-

connected inverters to accurately control the output current waveform [10]. The goal 

of deadbeat current control is to achieve fast dynamic response and zero steady-state 

error. In a grid-connected inverter system, the inverter is required to inject a sinusoidal 

current into the grid that is in phase with the grid voltage. Deadbeat current control is 

used to ensure that the current injected by the inverter matches the desired waveform 

as closely as possible, even in the presence of disturbances such as changes in the load 

[11]. Deadbeat current control is typically implemented using a linear state-space 

model of the inverter and grid. The controller uses this model to calculate the control 

inputs required to achieve the desired current waveform. The controller continuously 

updates the control inputs to track changes in the grid and load conditions [11]. One 

of the main advantages of deadbeat current control is its fast response time, which 

helps to minimize the harmonic distortion of the current waveform [12]. Additionally, 

the zero steady-state error achieved by the controller ensures that the current waveform 
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is accurately maintained even under changing conditions [13]. Deadbeat current 

control has been widely used in grid-connected inverter applications for its robustness 

and accuracy. However, it requires a precise model of the inverter and grid, which can 

be challenging to obtain in some cases. Additionally, the controller can be sensitive to 

modelling errors and associated one sampling period delay [14], which can limit its 

performance in some applications. 

High-performance control systems for power electronic inverters are now most 

often implemented digitally. This is brought about by the ease of use and flexibility of 

digital controllers, the inclusion of safety and monitoring features, and the steadily 

declining cost of digital control platforms [15]. However, digital implementation has 

some drawbacks, with the most challenging being the digital time delay [16]. 

Time delay refers to the period of time taken for a system to respond to a 

change or input [17]. In various fields, including engineering, control systems, and 

signal processing, time delay is a phenomenon that occurs when there is a noticeable 

gap between the application of a stimulus or signal and the system's corresponding 

response [18].. In a dynamic system, such as an inverter plant, time delay can arise due 

to several factors, including processing and communication delays. Processing delays 

occur when there is a delay in the system's ability to process information or execute 

control actions. Communication delays occur when there is a time lag in transmitting 

signals between different components or subsystems of the plant. Time delays can 

have significant implications for the stability, performance, and overall behaviour of a 

system. They can lead to oscillations, instability, and even system failure if not 

properly accounted for in the design and control processes. Therefore, understanding 

and managing time delays is crucial in ensuring the reliable and efficient operation of 

complex systems, such as inverter system.[19]. Compensators are used in an effort to 

lessen or do away with the delays caused. Time-delay mitigation methods can be 

classified in terms of sensitivity to the modelling of the system. Model-based methods 

have a higher degree of precision but their precision is highly reliant on the accuracy 

of system modelling, while model-free methods have a lower degree of precision but 

are not affected by the correctness of the model. Among prominent controllers from 

the model-based delay compensation approach are the deadbeat controller (DBC) and 

the model predictive controller (MPC). On the other hand, prominent methods from 

the model-free approach are the filter-based technique (FBT) and the technique of 

shifting the sampling instants (SSI) of the control variable [17]. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 
 

The control of grid-connected inverters is classified into primary, secondary 

and tertiary controls. In this research work, the focus was strictly on the improvement 

of the primary control. In grid-connected inverters, primary control can be 

implemented in either analogue or digital form, where analogue control involves the 

manual tuning of traditional controllers, such as the proportional-integral (PI), 

proportional-integral-derivative (PID), or proportional-resonant (PR) controllers, 

while digital control involves the use of micro-controller to implement the control 

design, such as the deadbeat control, the model predictive control, etc. Deadbeat 

control refers to a condition in which the response is exactly the same as the reference 

input after a defined and finite time interval, but only at sampling instants. This type 

of control design is carried out in a discrete form. For decades, the deadbeat controller 

has gotten a lot of attention because of its benefits, which include zero steady-state 

error [11], [20], [21], straightforward implementation on a digital control system, low 

current harmonics, fast dynamic response [22], and time-delay compensation 

capabilities [10], [17], [23]. However, this type of controller has been criticised for its 

aggressiveness, its sensitivity to model accuracy, and the existence of the inherent one-

sampling-period delay. But these issues can be minimised by using a tuning 

polynomial, among others. In [10], the modelling of the controller used time-delay 

consideration and model-free time-delay compensation. 

1.2 Problem statement 

Digital signal processing improvements allow inverters to be controlled by a 

microprocessor. Digital control is more reliable and flexible than analogue control and 

it is also programmable. The most technically problematic downside of digital control 

implementation is the phase lag caused by sampling and updating control quantities, 

calculations in the digital signal processor, and the sampling and holding of the digital 

pulse-width modulator. This phase lag challenges the controller’s resilience. 

Deadbeat current control (DBCC) has been criticised for it aggressiveness to 

control actions, sensitivity to model accuracy, and inherent one-sampling-period 

delay. These drawbacks reduce the potential of this controller to achieve fast current 

tracking and resilience to disturbances. In the literature, a state observer has been used 

to lessen the sensitivity to model accuracy and the method of shifting sampling and 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 
 

updating instants has been used to mitigate the time delay associated with this type of 

controller. However, among the techniques of shifting sampling and updating instants 

for time-delay mitigation, the single-sampling single-updating (SS-SU) and the 

double-sampling double-updating (DS-DU) methods are associated with one-period 

time delay and half-period time delay, respectively, and may be susceptible to noise-

related issues [24]–[27].  

Furthermore, there is a need to further reduce this residual time delay to 

significantly enhance the achievable dynamic response of the controller [28], [29]. The 

multi-sampling multi-updating method can reduce the residual delay by some fraction 

compared with those of SS-SU and DS-DU, but this method introduces some 

nonlinearities, mainly because of the discontinuity of the modulating waveform [15]. 

Therefore, the MS-MU method relies on the use of an anti-aliasing filter in the 

feedback path [30], [31] However, the added filter compromises the dynamic benefits 

obtained by the MS-MU method [26], [29], [32]–[37]. Hence, this research work 

introduced novel approaches to enhance the accuracy and efficiency of the DSDU 

method. One key aspect involved the modelling of time-delay terms, which aimed to 

reduce sensitivity to the accuracy of the model. Additionally, the study proposed the 

utilization of the quadruple-sampling method to further minimize the residual time 

delay by half. By doing so, it eliminated the necessity for an anti-aliasing filter 

commonly employed in MSMU. Overall, these innovations not only improved the 

DSDU method but also eliminated the need for an additional component, leading to 

enhanced performance and efficiency.  

1.3 Aim 

This research aimed at mitigating the inherent one-sampling delay associated with 

deadbeat current control without requiring an anti-aliasing filter. 

1.4 Objectives 

This research work embarked on the following objectives:  

1. To develop a deadbeat current controller in order to improve the voltage and 

current performance of a grid-connected inverter.  
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2. To model and simulate a quadruple-sampling deadbeat current controller to 

minimise the one-sampling-period delay inherent in a deadbeat controller for grid-

connected inverter application.  

3. To compare the performance improvement between the proposed quadruple-

sampling deadbeat current controller with the performance of the conventional PI-

based current controller  

1.5 Scope of research 

The limits of the research work are as follows: 

1. A three-phase full-bridge grid-connected inverter with a power rating of 80 kW 

was used. 

2. A 680V DC source was applied to the inverter. 

3. The AC nominal voltage used in this simulation was 230 V. 

4. Two resistive-inductive loads of 15 kW, 2 kvar and 20 kW, 3 var were used. 

5. Quadruple-sampling deadbeat current control was used for the inner loop and PI 

voltage control was used for the outer loop.  

6. MATLAB/Simulink 2021a was used as a tool to test and compare the performance 

of the controllers. 

7. A grid-impedance variation from 15.6 µH to 21.6 µH was used to test the stability 

of the controllers. This was because grid impedance varies as a result of other 

inverters connected to the grid, which may result in a variable resonance frequency 

that challenges the stability and robustness of the LCL filter of an inverter. 

1.6 Contribution of the research 

The main innovation of this study involves integrating two notable strategies for time 

delay compensation: the quadruple-sampling technique from the SSI method and the 

state variable derivative approach from deadbeat current control methods. The goal is 

to alleviate the single-sampling-period delay linked with DBCC. The newly suggested 

approach effectively reduces the delay from one sampling period to a quarter of a 

sampling period (
1

4
), all without the need for an anti-aliasing filter. This enhancement 
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not only minimizes the delay but also broadens the controller bandwidth, enhancing 

the system's ability to handle fluctuations in parameters. 

1.7 Outline of thesis 

This thesis is composed of eight chapters and is based on a set of articles published in 

peer-review journals. These articles presented theoretical and simulation results that 

addressed each objective set in this thesis. 

Chapter 1: The background of the study, the problem statement, the aim of 

this research work, and the research objectives, scope, and contribution are presented.  

Chapter 2: This chapter gives a concise review of research works related to 

time-delay compensation in grid-connected inverter application. 

Chapter 3: The methodology used in the research is presented. This includes 

the step-by-step procedure for achieving the set objectives. 

Chapter 4: A comprehensive review and analysis of the relevant literature 

regarding time-delay compensation for a grid-connected inverter are presented. 

Chapter 5: The design and simulation of five prominent deadbeat current 

controllers for grid-connected inverter application with the best response time and 

robustness again parameter variations are presented to address the first objective. 

Chapter 6: The analysis of the proposed quadruple-sampling state-variable-

derivative deadbeat current control method with time delay is presented to address the 

second objective. 

Chapter 7: A comparison between the performances of the proposed controller 

and the PI current controller is presented to address the third objective.  

Chapter 8: The conclusion and recommendations for future works are 

presented in this chapter. 
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