# INDUSTRIAL SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (ISPECT) SYSTEM FOR OIL-WATER TWO-PHASE FLOW IN A HORIZONTAL PIPELINE

HANAFI BIN ITHNIN

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

AUGUST 2023

Dedicated to my beloved family, especially my parents, Ithnin Kasim, Siti Halijah Tahir, Faridah Abu Bakar, Mohd Lip Rahman and Rohaya Omar, my dearest wife Norliana Mohd Lip, and beloved daughter Nur Fatihah Hanafi. Also, my supportive supervisor Assoc. Prof. Ts. Dr. Elmy Johana Mohamad and co-supervisor Ts. Dr. Nazrul Hizam Yusoff.

Thank you very much for your support and understanding.

#### ACKNOWLEDGEMENT

#### Bismillahirrahmanirrahim

All praise to Allah S.W.T., Who has blessed me to complete this research and writing of this thesis. Peace and blessings are upon the great prophet Muhammad S.A.W. Abundance of grace and forgiveness to companions, preachers and religious experts.

First and foremost, a huge appreciation I extend to my supervisor, Assoc. Prof. Ts. Dr. Elmy Johana Mohamad for her enthusiasm, support, and endless advice towards completing my studies journey. I would like to give my sincere thanks to Ts. Dr. Nazrul Hizam Yusoff as co-supervisor for his tremendous support and advice throughout the whole research period.

A million thanks to the research officers and technicians of Plant Assessment Technology (PAT) Group, Industrial Technology Division, and Malaysian Nuclear Agency personnel for their advice, guidance, and help during the experimental works. My gratitude is also extended to Mr. Wan Hamirul Wan Kamal from Medical Technology Division, Malaysian Nuclear Agency, for his help in providing the radiotracer source. A great thank also to Public Service Department and Malaysian Nuclear Agency for the support through my research study.

Finally, my deepest gratitude and appreciation to my late father, Ithnin Bin Kasim, and late mothers, Siti Halijah Tahir and Faridah Abu Bakar, father-in-law Mohd Lip Rahman and mother-in-law Rohaya Omar. The very special person, my dearest wife Norliana Mohd Lip, who is always encouraging and supports my journey with endless love till the end. Humbly express to my daughter Nur Fatihah Hanafi for being patient and for internal support. Thank you too to my siblings and friends for their advice and suggestion for handling this study.

My study would not have been possible without the invaluable guidance and help of those experienced people. Their enthusiasm, valuable input, suggestion, and encouragement have enabled me to go through the ups and downs of this study with confidence. All cooperation from all of you will be highly appreciated. May Allah reward all of you in the hereafter.



#### ABSTRACT

Understanding the oil-water flow pattern throughout the transportation in a horizontal pipeline would ensure it is efficiently supervised and could greatly assist in managing it. Hence, the flow pattern data can be utilised to design and create better process equipment such as for the oil-water separator. A nonagonal industrial single photon emission computed tomography system (iSPECT) imager for horizontal pipeline monitoring system is constructed and presented in this thesis. The iSPECT system can visualise the oil-water interface level inside a horizontal pipe. The goal of this study is to use the iSPECT system as an instrument to inspect and monitor the flow pattern of the oil-water separation process in the industry. Previous works on industrial iSPECT were focused on imaging the radiotracer distribution in vertically installed equipment, such as mixing tanks. However, this work investigates the capability of using 36 Sodium Iodide detectors by simulating different detectors arrangements using MCNPX code to image the flow pattern inside a horizontal pipe. The nonagonal ring arrangement was found to be the best detection geometry from the simulation study. Subsequently, the nonagonal iSPECT hardware and software for data acquisition and image reconstruction were fabricated and tested in a static condition. Technetium (Tc-99m) mixed with water was used as radiotracer material, providing the gamma-ray emission within the flow. Three experiments were done, where the Tc-99m radiotracer was left stationary inside the pipe, the flowing tracer in water flow and the flowing tracer in oil-water flows. The images (visualisations) of dynamics flow for water-only flow and liquid-liquid (oil-water) flow were obtained, and all images were then analysed. The visualisation results show the system is able to image water levels up to 60% of the region diameter with an error of  $\pm 5\%$ . The information obtained undeniably would be able to help in the equipment designing and verification of existing computational modelling and simulation techniques. Finally, it would ensure process control and monitoring during the oil-water separation process is proficiently administered and monitored.



#### ABSTRAK

Memahami corak aliran minyak-air dalam saluran paip mendatar akan memastikan ia diselia dan diselenggara dengan cekap. Oleh itu, data corak aliran boleh digunakan untuk mereka bentuk dan mencipta peralatan proses yang lebih baik seperti untuk pengasingan minyak-air. Pengimej sistem tomografi berkomputer pancaran foton tunggal industri (iSPECT) nongonal untuk sistem pemantauan saluran paip mendatar dibina dan dibentangkan dalam tesis ini. Sistem iSPECT boleh menggambarkan paras antara fasa minyak-air di dalam paip mendatar. Matlamat kajian ini adalah untuk menggunakan sistem iSPECT sebagai instrumen untuk memeriksa dan memantau corak aliran proses pengasingan minyak-air dalam industri. Kerja-kerja terdahulu berkaitan iSPECT tertumpu pada pengimejan pengedaran penjejak radioaktif dalam peralatan yang dipasang secara menegak, seperti tangki pencampur. Walau bagaimanapun, kerja ini menyiasat keupayaan menggunakan 36 pengesan Natrium Iodida dengan mensimulasikan susunan pengesan yang berbeza menggunakan kod MCNPX untuk pengimejan corak aliran di dalam paip mendatar. Susunan bebentuk nonagonal didapati sebagai geometri pengesanan terbaik daripada kajian simulasi. Selepas itu, perkakasan dan perisian iSPECT nonagonal untuk pemerolehan data dan pembinaan semula imej telah direka dan diuji. Technetium (Tc-99m) dicampur dengan air digunakan sebagai bahan penjejak radioaktif, memberikan pancaran sinar gamma dalam aliran. Tiga eksperimen telah dijalankan, di mana pengesan radio Tc-99m dibiarkan pegun di dalam paip, pengesan yang mengalir dalam aliran air dan pengesan yang mengalir dalam aliran air minyak. Imej (visualisasi) aliran dinamik untuk aliran air sahaja dan aliran minyak-air diperoleh, dan semua imej kemudiannya dianalisis. Hasil visualisasi menunjukkan sistem ini dapat imej paras air sehingga 60% daripada diameter paip dengan ralat ±5%. Maklumat yang diperolehi akan dapat membantu dalam reka bentuk peralatan serta sebagai pengesahan kepada teknik pemodelan dan simulasi sedia ada. Akhir sekali, ia akan memastikan kawalan dan pemantauan semasa proses pengasingan minyak-air ditadbir dan dipantau dengan lebih cekap.



# CONTENTS

|           | TITL | Е                                  | i     |
|-----------|------|------------------------------------|-------|
|           | DECI | LARATION                           | ii    |
|           | DEDI | CATION                             | iii   |
|           | ACK  | NOWLEDGEMENT                       | iv    |
|           | ABST | TRACT                              | v     |
|           | ABST | <b>TRAK</b>                        | vi    |
|           | CON  | TENTS                              | vii   |
|           | LIST | OF TABLES                          | xii   |
|           | LIST | OF FIGURES                         | xiii  |
|           | LIST | OF SYMBOLS AND ABBREVIATIONS       | xviii |
|           | LIST | OF APPENDICES                      | XX    |
| CHAPTER 1 | INTR | ODUCTION                           | 1     |
|           | 1.1  | An Overview of Computed Tomography | 1     |
|           | 1.2  | Research Background                | 2     |
|           | 1.3  | Problem Statement                  | 4     |
|           | 1.4  | Research Objectives                | 5     |
|           | 1.5  | Research Scope and Limitation      | 5     |
|           | 1.6  | Research Contribution              | 6     |
|           | 1.7  | The Organisation of the Thesis     | 7     |
| CHAPTER 2 | LITE | RATURE REVIEW                      | 9     |
|           | 2.1  | Introduction                       | 9     |
|           | 2.2  | SPECT System                       | 10    |
|           |      | 2.2.1 Radiation Source             | 12    |

|        |          | 2.2.1.1 Tracer Principle                      | 12 |
|--------|----------|-----------------------------------------------|----|
|        |          | 2.2.1.2 Radiotracer in Industrial             | 12 |
|        |          | Application                                   |    |
|        |          | 2.2.2 Radiation Detector and Collimator       | 20 |
|        |          | 2.2.2.1 Sodium Iodide Scintillating           | 22 |
|        |          | Detectors                                     |    |
|        |          | 2.2.2.2 Collimator for SPECT                  | 24 |
|        |          | 2.2.3 Imaging the Radiotracer Distribution    | 27 |
|        |          | 2.2.3.1 Analytic Reconstruction               | 28 |
|        |          | Algorithm                                     |    |
|        |          | 2.2.3.2 Iterative Reconstruction              | 32 |
|        |          | Algorithm                                     |    |
|        |          | 2.2.3.3 Maximum Likelihood-                   | 34 |
|        |          | Expectation Maximization                      |    |
|        |          | Algorithm                                     |    |
|        | 2.3      | Medical vs Industry SPECT                     | 36 |
|        | 2.4      | Industrial Application of SPECT System        | 38 |
|        | 2.5      | Liquid-Liquid Flow Pattern                    | 43 |
|        |          | 2.5.1 Laminar Flow in a Horizontal Pipeline   | 43 |
|        |          | 2.5.2 Previous Work on Imaging the            | 45 |
|        |          | Multiphase Flow                               |    |
|        |          | 2.5.3 Oil-Water Separation                    | 47 |
|        | 2.6      | Summary                                       | 49 |
| CHAPTE | CR 3 MOD | ELLING AND SIMULATION OF ISPECT               | 51 |
|        | 3.1      | Introduction                                  | 51 |
|        | 3.2      | The MCNPX Code                                | 52 |
|        |          | 3.2.1 MCNPX Input Cards for the iSPECT system | 52 |
|        | 3.3      | Modelling iSPECT system                       | 56 |
|        |          | 3.3.1 NaI Detector and Collimator             | 56 |
|        |          | 3.3.2 Hexagon, Octagon and Nonagon iSPECT     | 57 |

viii

|           | 3.4  | PRSF of the iSPECT System                  | 57 |
|-----------|------|--------------------------------------------|----|
|           |      | 3.4.1 From Model to Input Generation       | 58 |
|           |      | 3.4.2 MCNPX Execution and Data Output      | 59 |
|           | 3.5  | iSPECT System Simulation                   | 60 |
|           |      | 3.5.1 Point Source Simulation              | 61 |
|           |      | 3.5.2 Distribution Source Simulation       | 61 |
|           | 3.6  | Simulation Process Flow                    | 63 |
|           | 3.7  | Summary                                    | 63 |
| CHAPTER 4 | ISPE | CT SYSTEM DEVELOPMENT AND                  | 65 |
|           | EXPH | ERIMENTAL SETUP                            |    |
|           | 4.1  | Introduction                               | 65 |
|           | 4.2  | Development of iSPECT System (Hardware)    | 66 |
|           |      | 4.2.1 Sodium Iodide Scintillation Detector | 66 |
|           |      | and Lead Collimator                        |    |
|           |      | 4.2.2 Photon Counters                      | 68 |
|           |      | 4.2.3 iSPECT Detectors Calibration         | 69 |
|           |      | 4.2.4 Detector Arrangements                | 74 |
|           | 4.3  | Development of iSPECT Software System      | 76 |
|           |      | 4.3.1 iSPECT Data Acquisition System       | 76 |
|           |      | 4.3.1.1 Setting up the Communication       | 76 |
|           |      | with 4612 Counters                         |    |
|           |      | 4.3.1.2 Data Retrieving Program            | 77 |
|           |      | 4.3.2 iSPECT Image Reconstruction          | 77 |
|           |      | Program                                    |    |
|           |      | 4.3.2.1 ML-EM for iSPECT Image             | 77 |
|           |      | Reconstruction                             |    |
|           |      | 4.3.2.2 Image Plotting                     | 79 |
|           |      | 4.3.2.3 Image Analysis Tools               | 79 |
|           | 4.4  | Experimental Setup                         | 80 |
|           |      | 4.4.1 Pre-Experiment and Radiation Safety  | 81 |
|           |      | Procedure                                  |    |

ix

|           |     | 4.4.2  | Experimental Simulation using Time-  | 82  |
|-----------|-----|--------|--------------------------------------|-----|
|           |     | Avera  | age SPECT system                     |     |
|           |     | 4.4.3  | Dynamics Experiment Setup            | 84  |
|           |     |        | 4.4.3.1 Experimental Flow Rig        | 84  |
|           |     |        | 4.4.3.2 Radiotracer Source           | 86  |
|           |     |        | 4.4.3.3 Static Water Experiment      | 87  |
|           |     |        | 4.4.3.4 Flowing Water-Air            | 87  |
|           |     |        | Experiment                           |     |
|           |     |        | 4.4.3.5 Flowing Oil-Water            | 88  |
|           |     |        | Experiment                           |     |
|           | 4.5 | Nonag  | gonal iSPECT Imaging Process Flow    | 88  |
|           | 4.6 | Sumn   | nary                                 | 89  |
| CHAPTER 5 | RES | ULTS A | AND DISCUSSION                       | 91  |
|           | 51  | Introd | luction                              | 91  |
|           | 5.2 | Nona   | gonal iSPECT system                  | 91  |
|           | 5.3 | Exper  | imental Simulation for Emission CT   | 93  |
|           | 0.0 | (Time  | -Average SPECT)                      |     |
|           |     | 5.3.1  | Collimator Shape Effect              | 93  |
|           |     | 5.3.2  | Number of Projection                 | 98  |
|           | 5.4 | iSPEC  | CT System Characteristic using MCNPX | 99  |
|           | U.S | 5.4.1  | Detection Efficiency                 | 99  |
|           |     | 5.4.2  | Image Resolution                     | 102 |
|           |     | 5.4.3  | Image Accuracy                       | 103 |
|           |     |        | 5.4.3.1 Radial Singe Point-source    | 103 |
|           |     |        | 5.4.3.2 Angular Single Point Source  | 106 |
|           |     |        | 5.4.3.3 Two Point-sources            | 108 |
|           |     | 5.4.4  | Distribution Source Simulation       | 109 |
|           |     |        | 5.4.4.1 Distribution Source Level    | 110 |
|           |     |        | 5.4.4.2 Level and Area Determination | 113 |
|           | 5.5 | Exper  | imental Study Results                | 114 |
|           |     | 5.5.1  | Static Tracer Experiment             | 114 |
|           |     | 5.5.2  | Dynamics Experiment                  | 117 |

x

|           |     | 5.5.2.1 Water-Air Laminar Flow  | 117 |
|-----------|-----|---------------------------------|-----|
|           |     | Imaging                         |     |
|           |     | 5.5.2.2 Water-Oil Laminar Flow  | 123 |
|           |     | Imaging                         |     |
|           | 5.6 | Discussion                      | 128 |
| CHAPTER 6 | CON | CLUSION AND RECOMMENDATIONS     | 130 |
|           | 6.1 | Conclusions                     | 130 |
|           | 6.2 | Recommendations for Future Work | 132 |
|           |     |                                 |     |

# REFERENCES

APPENDICES 18

134 148

xi

# LIST OF TABLES

| 2.1       | Most commonly used radiotracer in the industry         | 17  |
|-----------|--------------------------------------------------------|-----|
| 2.2       | Main differences between industrial and medical SPECT  |     |
|           | system                                                 | 36  |
| 2.3       | Development of SPECT for industrial application        | 40  |
| 2.4       | Flow type and of Reynolds number value                 | 45  |
| 3.1       | Input parameters for surface card                      | 53  |
| 3.2       | Input parameters for cell card                         | 54  |
| 3.3       | Input parameters for data card                         | 55  |
| 4.1       | HV setting for all 36 NaI detectors                    | 71  |
| 4.2       | χ2 value for all 36 NaI detectors                      | 73  |
| 4.3       | Condition for different collimator arrangement         | 75  |
| 4.4       | Tc-99m activity used for the experiment                | 86  |
| 5.1       | Peak position and FWHM value for different projection  |     |
|           | numbers from the two sets of collimators               | 95  |
| 5.2       | The iSPECT detection properties for three arrangements | 102 |
| 5.3 p E R | Experiment and expected value of the water-air image's |     |
|           | properties                                             | 122 |
| 5.4       | Experiment and expected value of the water-oil image's |     |
|           | properties                                             | 126 |

## LIST OF FIGURES

| 2.1       | Tomography system block diagram                                                  | 11 |
|-----------|----------------------------------------------------------------------------------|----|
| 2.2       | The principle of radiotracer experiment by Furman et al.                         |    |
|           | (2003)                                                                           | 14 |
| 2.3       | Schematic diagram of experimental setup for RPT                                  |    |
|           | experiment by Han et al., (2021)                                                 | 15 |
| 2.4       | Generic block diagram of the data acquisition system of                          |    |
|           | radiation detectors (Varela, 2004)                                               | 20 |
| 2.5       | Schematic of scintillator and photo multiplier (PMT)                             |    |
|           | (Werner, 2011)                                                                   | 22 |
| 2.6       | Principle of production of prompt and delayed scintillation                      |    |
|           | light by incident radiation. (Ahmed, 2014)                                       | 23 |
| 2.7       | Radiation profile or point spread function, PSF for a                            |    |
|           | parallel-hole collimator. The FWHM (full width at half-                          |    |
|           | maximum) of the profile is used to characterize collimator                       |    |
|           | resolution (Sorenson et al., 1987)                                               | 25 |
| 2.8 p E R | Image reconstruction techniques used for tomography                              |    |
|           | system. (Kim, 2014)                                                              | 27 |
| 2.9       | Projection of line integral $f(x,y)$ at a fix angle $\theta$                     | 28 |
| 2.10      | (a) Relation between line integral passing through a fixed                       |    |
|           | point ( $x_o$ , $y_o$ ) and (b) the loci of integrated $p(xr, \theta)$ values in |    |
|           | the sinogram                                                                     | 29 |
| 2.11      | Two-dimensional central section theorem, showing the                             |    |
|           | equivalency between the one-dimensional Fourier                                  |    |
|           | transform of a projection at angle f and the central section                     |    |
|           | at the same angle though the two-dimensional Fourier                             |    |
|           | transform of the object (Wernick, 2004)                                          | 30 |

xiii

| 2.12    | Backprojection into an image reconstruction array of all                  |    |
|---------|---------------------------------------------------------------------------|----|
|         | values of $p(xr, \theta)$ for a fixed value of $\theta$ . (Wernick, 2004) | 31 |
| 2.13    | Measurement principle of iterative reconstruction for                     |    |
|         | tomography system. (Kim, 2014)                                            | 33 |
| 2.14    | The maximum-likelihood expectation-maximization                           |    |
|         | algorithm in the form of the general iterative model                      | 35 |
| 2.15    | Current model of SPECT/CT system; (a) commercially                        |    |
|         | available SPECT/CT system (GE Healthcare, 2018) and (b)                   |    |
|         | recently developed SPECT/CT for industrial purpose by                     |    |
|         | (Mesquita et al., 2020)                                                   | 37 |
| 2.16    | Pipe configurations                                                       | 43 |
| 2.17    | Oil-water flow patterns defined by Trallero, (1996)                       | 44 |
| 2.18    | A typical flow pattern map for oil-water horizontal flow                  |    |
|         | (Trallero, 1996)                                                          | 44 |
| 2.19    | An example of electric capacitive tomography system. A                    |    |
|         | twin-plane arrangement of segmented ECT sensor                            |    |
|         | electrodes (Mohamad, 2012)                                                | 46 |
| 2.20    | An example of wire-mesh sensor system. (Yusoff, 2012)                     | 46 |
| 3.1     | Surface card for MCNPX input                                              | 53 |
| 3.2     | Cell card for MCNPX input                                                 | 54 |
| 3.3     | Data card for MCNPX input                                                 | 54 |
| 3.4 F R | MCPLOT windows for plotting the iSPECT                                    | 55 |
| 3.5     | Single NaI scintillation model and four detectors arrange in              |    |
|         | an array for iSPECT simulation                                            | 56 |
| 3.6     | Three different model of iSPECT system used in this study;                |    |
|         | (a)hexagonal (6x6), (b) octagonal (8x4) and (c) nonagonal                 |    |
|         | (9x4)                                                                     | 57 |
| 3.7     | The system matrix of 1245 points inside the 20 cm ROI                     | 58 |
| 3.8     | Input generator program developed using LabVIEW                           | 58 |
| 3.9     | Terminal command for mcnpx execution in parallel                          | 59 |
| 3.10    | Batch files created for mcnpx execution                                   | 59 |
| 3.11    | PRSF file generated from MCNPX calculation                                | 60 |
| 3.12    | Point source position inside ROI                                          | 61 |
| 2 1 2   | Additional input for volume source definition                             | 62 |

| 3.14    | Creation of distribution source to model different level of |       |
|---------|-------------------------------------------------------------|-------|
|         | laminar flow i a horizontal pipeline                        | 62    |
| 3.15    | Simulation study process flow                               | 63    |
| 4.1     | Schematic diagram of the iSPECT system                      | 66    |
| 4.2     | Ladlum 44-2 Sodium iodide, NaI detector                     | 67    |
| 4.3     | Lead collimator for NaI detector                            | 67    |
| 4.4     | (a)Model 4612 Ludlum 12 single channel analyzer and (b)     |       |
|         | the 4612 counters with detector and cable connector         | 68    |
| 4.5     | 36 NaI detectors arrange in circle                          | 69    |
| 4.6     | Ludlum 4612 Counter software interfaces for HV Plateau      | 70    |
| 4.7     | HV Plateau example for a single detector                    | 71    |
| 4.8     | Two tail $\chi^2$ distribution with 90% confidence interval | 72    |
| 4.9     | The example of $\chi 2$ calculation for Detector 1          | 73    |
| 4.10    | Sketch diagram for FWHM calculation                         | 75    |
| 4.11    | SubVI for communication port using serial VISA              | 77 AH |
| 4.12    | SubVI for the implementation of MLEM algorithm              | 78    |
| 4.13    | Plotting subVI for iSPECT image reconstruction              | 79    |
| 4.14    | Flow chart for image reconstruction using MLEM              | 80    |
| 4.15    | Radiation monitoring and PPE used in conducting the         |       |
|         | radiotracer and sealed source experiment                    | 82    |
| 4.16    | Scanning process for a time-average SPECT system            | 83    |
| 4.17 ER | Time-average SPECT system                                   | 84    |
| 4.18    | Schematic diagram of flow rig used in iSPECT experiment     | 85    |
| 4.19    | Lead pot and vacuumed vile for radiotracer source           | 86    |
| 4.20    | Different water level inside the horizontal pipe            | 87    |
| 4.21    | Different oil-water ratio inside the horizontal pipe        | 88    |
| 4.22    | Nonagonal iSPECT imaging experiment flow                    | 89    |
| 5.1     | Basic block diagram of the nonagonal iSPECT system          | 92    |
| 5.2     | Actual hardware system of the nonagonal iSPECT; (a)         |       |
|         | Nonagonal detection ring, (b) 12-channel analyser and (c)   |       |
|         | data and image reconstruction system.                       | 92    |
| 5.3     | Circular and rectangular collimator aperture                | 94    |
| 5.4     | Two sets of reconstructed images using different shapes of  |       |
|         | collimator aperture                                         | 94    |

| 5.5      | Reconstruction image and its profile plot for rectangular      |     |
|----------|----------------------------------------------------------------|-----|
|          | collimator aperture system                                     | 96  |
| 5.6      | Reconstruction image and its profile plot for circular         |     |
|          | collimator aperture system                                     | 97  |
| 5.7      | The detection efficiency map for Nonagonal, Octagonal and      |     |
|          | Hexagonal iSPECT detection                                     | 100 |
| 5.8      | Average detection efficiency for the three iSPECT              |     |
|          | arrangements                                                   | 100 |
| 5.9      | The reconstructed image of the point source at the different   |     |
|          | radial positions                                               | 104 |
| 5.10     | Active pixel counts from the reconstruction point source       |     |
|          | image of the iSPECT arrangements                               | 104 |
| 5.11     | Graph of performance index (p-index) for the point source      |     |
|          | at different radial positions                                  | 105 |
| 5.12     | The reconstructed point-source image at different angular      |     |
|          | positions                                                      | 106 |
| 5.13     | Graph of active pixel value for the point source at different  |     |
|          | angles                                                         | 107 |
| 5.14     | Graph of performance index (p-index) for the point source      |     |
|          | at different angular positions                                 | 108 |
| 5.15     | Reconstructed images for two point-sources detection           | 109 |
| 5.16 E R | Reconstructed images of different distribution source levels   |     |
|          |                                                                | 110 |
| 5.17     | Cut-off pixel value for the actual distribution source level   |     |
|          | inside ROI                                                     | 111 |
| 5.18     | The average distribution source levels using selected pixel    |     |
|          | cut-off value                                                  | 112 |
| 5.19     | Error percentage of the distribution source level from the     |     |
|          | reconstructed image from the three iSPECT systems              | 112 |
| 5.20     | Standard deviation of the pixel level along the x-axis for the |     |
|          | three iSPECT systems                                           | 113 |
| 5.21     | Reconstructed images of a static Tc-99m tracer mixture         |     |
|          | inside a horizontal pipe at four different water levels        | 115 |

xvi

| 5.22    | Reconstructed images of a static Tc-99m tracer mixture         |     |
|---------|----------------------------------------------------------------|-----|
|         | inside a horizontal pipe at four different measurement         |     |
|         | duration                                                       | 115 |
| 5.23    | Relative count of the 36 detectors                             | 116 |
| 5.24    | (a) Area percentage and (b) average level of the               |     |
|         | reconstructed images for one frame per second                  | 117 |
| 5.25    | Flow profile of water mixed with Tc-99m                        | 118 |
| 5.26    | Reconstructed images of water-air flow at four different       |     |
|         | levels                                                         | 119 |
| 5.27    | Average level (pixel value) at the water-air interface for the |     |
|         | ten frames                                                     | 120 |
| 5.28    | Standard deviation of the average water level value at four    |     |
|         | different levels                                               | 121 |
| 5.29    | Average level and area percentage plotted for the ten          |     |
|         | reconstructed images from the water-air experiment             | 122 |
| 5.30    | Reconstructed images of oil-water flow at four different       |     |
|         | levels                                                         | 124 |
| 5.31    | Average level (pixel value) at the water-oil interface for the |     |
|         | ten frames                                                     | 125 |
| 5.32    | Standard deviation of the average water level value at four    |     |
|         | different water-oil levels                                     | 126 |
| 5.33 ER | Average level and area percentage plotted for the ten          |     |
|         | reconstructed images from the water-oil experiment             | 127 |

xvii

## LIST OF ABBREVIATIONS

xviii

| CARPT  | -  | Computer Assisted Radioactive Particle Tracking |
|--------|----|-------------------------------------------------|
| СТ     | -  | Computed Tomography                             |
| ECT    | -  | Electrical capacitance tomography               |
| EIT    | -  | Electrical Impedance Tomography                 |
| ERT    | -  | Electrical Resistance Tomography                |
| FBP    | -  | Filter Back Projection                          |
| FWHM   | -  | Full Width at Half Maximum                      |
| iSPECT | -  | Industrial SPECT                                |
| MCNPX  | -  | Monte Carlo N-Particle eXtended                 |
| MIT    | -  | Magnetic Induced Tomography                     |
| ML-EM  | -  | Maximum Likelihood Expectation Maximization     |
| MPI    | -  | Massage Passing Interface                       |
| MRT    | -  | Mean Residence Time                             |
| NORM   | _  | Natural Occuring Radioactive Material           |
| PET    | 51 | Positron Emission Tomography                    |
| PEPT   | -  | Positron Emission Particle Tracking             |
| PMT    | -  | Photo Multiplier Tube                           |
| PRSF   | -  | Point Source Respond Function                   |
| ROI    | -  | Region of Interest                              |
| RPT    | -  | Radioactive Particle Tracking                   |
| RTD    | -  | Rasidence Time Distribution                     |
| SCA    | -  | Single Channel Analyser                         |
| SPECT  | -  | Single Photon Emission Computed Tomography      |
| UT     | -  | Ultrasonic Tomography                           |
| WMS    | -  | Wire Mesh Sensor                                |
| XCT    | -  | X-ray Computed Tomography                       |
|        |    |                                                 |

# LIST OF SYMBOLS

xix

| α               | -  | Alfa particle                              |
|-----------------|----|--------------------------------------------|
| γ               | -  | Gamma-ray                                  |
| n               | -  | Neutron particle                           |
| Κ               | -  | Collimator hole constant                   |
| $R_c$           | -  | Collimator resolution                      |
| D               | -  | Diameter of interest region                |
| d               | -  | Collimator aperture width                  |
| l               | -  | Collimator hole depth                      |
| b               | -  | Point source-collimator distance           |
| р               | -  | Projection                                 |
| f               | -  | Line intergeral function                   |
| h <sub>ij</sub> | -  | Mean value of permittivity distribution    |
| $\lambda_j$     | -  | Tracer concentration                       |
| $Y_i$           | -  | Detector measurement of incoming radiation |
| Re              | DL | Reynolds number                            |
| PPER            | -  | Fluid density                              |
| $U_s$           | -  | Fluid velocity                             |
| μ               | -  | Fluid viscosity                            |

## LIST OF APPENDICES

| APPENDIX | TITLE                                           | PAGE |  |
|----------|-------------------------------------------------|------|--|
| А        | List of Publications and Award                  | 146  |  |
| В        | MCNPX Code for Nonagonal iSPECT System          | 148  |  |
| С        | Radiation Worker Certificate                    | 157  |  |
| Л        | Health, Safety and Environment (HSE) Procedure  | 158  |  |
| D        | for Radiotracer Experiment.                     |      |  |
| Б        | Emergency Response Plan on Radiation            | 159  |  |
| E        | Emergency                                       |      |  |
| F        | Model 44-10 Gamma Detector Specification        | 161  |  |
| G        | Model 4600 Multi Detector Counter Specification | 162  |  |
|          |                                                 |      |  |

### **CHAPTER 1**

#### **INTRODUCTION**

#### **1.1** An Overview of Computed Tomography

The first patented computed tomographic instrumentation was developed by Sir Godfrey N. Hounsfield using an x-ray machine in the early 1970s (Petrik, *et al.*, 2006). Since then, the development of a computed tomography system, especially for medical purposes, has been rapid due to its ability to image human internal organs noninvasively. It has to be emphasised that the ability to image an object non-invasively means tomography systems are not constrained to the medical field only. Eventually, more variation of the tomography system has been developed varying in the different sensor design, imaging speed, image reconstruction algorithms, and cost limitation. The tomographic system used for industrial purposes started evolving in the 1980s. The term process tomography is used to describe the usage of tomography systems to image industrial process flow.



In general, there are two types of tomography, namely soft-field and hard-field tomography. Soft-field tomography depends on the medium's physical properties interaction to be imaged with the sensor. Examples of soft-field tomography are electrical capacitance tomography (ECT), electrical resistance tomography (ERT), and electrical impedance tomography (EIT) (Beck, *et al.*, 1997; Borcea, 2002; Dickin & Wang, 1996). On the other hand, hard-field tomography disregards the interaction with the medium properties and only measures the source trajectory and attenuation of the source. The hard-field tomography system examples are X-ray micro-tomography

(XCT), Ultrasound tomography (UT), and gamma-ray tomography system (Wang, Yu, & De Man, 2008; Ozanyan, Wright, Stringer, & Miles, 2011; Johansen, 2005).

Gamma-ray computed tomography system can be operated in two modalities: transmission and emission. In transmission modality, a gamma-ray source emits the photon to penetrate the object of interest and attenuate within the body of different densities with varying attenuation (Hsieh, 2003). The attenuated gamma rays are detected by an array of detectors placed opposite the gamma source. This measuring process is repeated with multiple angles of projections. From these projections, the image reconstruction process is applied to produce the interesting object's tomographic image. Examples of gamma-ray transmission tomography systems are gamma process tomography (TECDOC, 2008) and GammaSpider (Abdullah, *et al.*, 2015).

On the other hand, in the gamma-ray emission tomography modality, a gammaray source known as the radioactive tracer is injected into the interest object or process and then distributed in the object depending on the flow of the process study. The distributed tracer inside the object emits gamma rays and subsequently is detected by the arrays of sensors surrounding the object. The image reconstruction process is applied to map the tracer distribution from these multiple arrays of projection. Examples of emission tomography systems are single-photon emission computed tomography, SPECT and positron emission tomography, PET (Wernick & Aarsvold, 2004). Chapter two presents a detailed discussion of these two modalities of gammaray tomography. This research will focus on the emission modality of the gamma-ray tomographic system in industrial applications. From here, the term SPECT refers to the medical use of emission tomography. The similarities and differences of these two systems will be discussed in detail in Chapter 2.

#### **1.2 Research Background**

Process tomography is a system used to image the industrial process's crosssectional parameters in relation to space and time. In contrast with other computed tomography systems, a process tomography system needs to have a high temporal resolution. This system's measurement can provide an important description of flow parameters such as flow pattern, flow composition, flow distribution, and more. More importantly, process tomography system measures can provide these parameters without the need to interrupt the flow process (Beck & Williams, 2012). This information is essential in optimising and designing industrial processes and process equipment, thus improving the accuracy of industrial flow process measurements in general.

Nowadays, several types of process tomography systems are being developed from soft-field and hard-field systems. Examples of developing process tomography systems are Electric Capacitance Tomography (ECT), Electric Resistant Tomography (ERT), Optical transmission tomography, Gamma-ray tomography, and X-ray tomography (Beck, et al., 1997; Borcea, 2002; Dickin & Wang, 1996; Wang, Yu, & De Man, 2008; Ozanyan, Wright, Stringer, & Miles, 2011; Johansen, 2005). Each of these different tomography systems has different measurement principles, and developing a suitable system depends on the interested application. The applicability of electrical tomography systems such as ECT and ERT depends on the process flow's electrical properties. On the other hand, density differences in the flow process are needed for measurement using an X-ray tomography system. The next consideration in developing the process tomography system is the suitability of the sensor to be installed in the flow process. The different sensor needs different preparation, such as special wall material. It is also important to acknowledge that the flow process needs to be compatible with the measurement principle and not be blinded. Other considerations are the tomography system's temporal and spatial resolution in the interest of the flow process to be imaged.

The process tomography system developed in this study is considered for the application of the tomographic image of a liquid-liquid flow pattern. An example of liquid-liquid flow is oil-water flow. The flow pattern is how fluids move through a reactor. Density gradients, caused by temperature or composition variations, tend to control the fluid's overall flow pattern. Liquid-liquid two-phase flow systems such as oil-water are used in many industrial applications. Examples of their applications in the petroleum industry include emulsions preparation, oil-water mixture separation, and transportation. Accurate prediction of liquid-liquid flow characteristics, such as

flow pattern transition, is important in many engineering applications such as process optimization, equipment design, safety and reliability, product quality and yield, and trouble shooting (Yusoff, 2012). For example, understanding and predicting flow pattern transitions in process optimization help engineers in identify the most efficient operating conditions, equipment sizing, and process configurations. This optimization leads to improved process performance, reduced energy consumption, and enhanced product quality. On the other hand, different flow patterns have distinct characteristics, such as liquid holdup, droplet size distribution, and interfacial area, which directly affect mass and heat transfer rates, pressure drop, and the behavior of process fluids. Failing to accurately predict flow patterns can result in operational instabilities, equipment damage, and safety hazards (Al-Safran et al., 2020). Despite its importance, the liquid-liquid flow has not been explored to the same extent as the gas-liquid flow. The density difference between the two phases is relatively small, while the viscosity ratio encountered can extend over several orders of magnitude, both of which bring . aufied great complexity. Thus, this study will serve as a new tool for imaging the stratified oil-water flow inside a horizontal pipeline.

#### 1.3 **Problem Statement**

Imaging a liquid-liquid flow such as oil-water flow gives essential information for the design of industrial process flow systems, process flow optimisation, and process flow monitoring. The ability to control and monitor oil-water flow is crucial to the industry such as oil and gas industry. Oil-water separation is an important process in the oil and gas industry. Currently, a new method has been proposed for the oil-water separation process through pipeline transfer. However, monitoring such separation process remains a problem as the measurement of the separation process needs to be non-intrusive and compatible with the robust industrial environment. The radiotracer method has been a proven method in process flow measurement for the oil and gas industry. Although the current radiotracer measurement method only provides one-dimensional information. An advanced measurement technique is needed to enable the industry to image the flow pattern inside an opaque pipe. Therefore, this study aims to develop an industrial SPECT system for imaging the radiotracer distribution in an oil-water flow system that is able to image different oil-water percentages. Thus, the information gathered can help engineers develop better equipment for oil-water separation.

#### 1.4 Research Objectives

The main objectives of this study are:

- i. To optimise the detection geometry of an industrial SPECT imaging device for oil-water pipeline imaging.
- ii. To design and fabricate the iSPECT hardware and the image reconstruction and analysis software for the iSPECT system.
- iii. To investigate the ability of the iSPECT system to image the oil-water stratified flow in a horizontal pipeline system.

#### 1.5 Research Scope and Limitation



This study covers the optimisation, design and fabrication of an iSPECT system which will finally be applied to image an oil-water flow. Thus, several parameters must be contained in this study's research scope. The scope of this study will cover the development of an industrial SPECT system for a pipeline which will provide a 2D image for oil-water flow studies covering software and hardware development. For the hardware sensor system, the limitation of this study is that it only uses 36 numbers of one-inch sodium iodide NaI detectors with lead collimators. A maximum number of 36 detectors was used in this study because the size of the region to be imaged is 20 cm in diameter. Thus, for a one-inch collimated detector, the calculation for the geometrical spacing in relation to the full width at half maximum at the centre of the interest region indicates 36 detectors are sufficient to image a 20 cm circular region (detail calculation can be referred to in Table 4.3).

Next, the iSPECT system's model was built in the simulation study, and gammaray detection calculations were executed using Monte Carlo N-Particle eXtended,

#### REFERENCES

- Abbott, B. G., Case, J. A., Dorbala, S., Einstein, A. J., Galt, J. R., Pagnanelli, R., ... & Wells, R. G. (2018). Contemporary cardiac SPECT imaging—innovations and best practices: an information statement from the American Society of Nuclear Cardiology. *Circulation: Cardiovascular Imaging*, 11(9), e000020.
- Abdullah, J., Hassan, H., Shari, M. R., Ibrahim, M. M., Yussup, N., Ithnin, H., & Mahmood, A. A. (2015). DEVELOPMENT AND IMPLEMENTATION OF A PORTABLE NUCLEONIC COMPUTED TOMOGRAPHY SYSTEM WITH CLAMP-ON FEATURES FOR ENGINEERING INSPECTION. Jurnal Teknologi, 77.
- Abu–Khadra S.A., Abdel–Sabour M.F., Abdel-Fattah A.T., Eissa H.S., Transfer factor of radioactive Cs and Sr from egyptian soils to roots and leafs of wheat plant, IX *Radiation Physics & Protection Conference*, 15-19 November 2008, Nasr City Cairo, Egypt
- Adam, C., & Garnier-Laplace, J. (2003). Bioaccumulation of silver-110m, cobalt-60, cesium-137, and manganese-54 by the freshwater algae Scenedesmus obliquus and Cyclotella meneghiana and by suspended matter collected during a summer bloom event. *Limnology and oceanography*, 48(6), 2303-2313.
- Affum, H. A., Adu, P. S., Dagadu, C. P. K., Coleman, A., & Addo, M. A. (2013). A TYPICAL RADIOTRACER TEST DESIGN: APPLICATION TO A FLUID CATALYTIC CRACKING UNIT. *e-Journal of Science & Technology*, 8(2).
- Atkinson, K. D. (2017). Development of a Gamma Emission Tomography System for High-Throughput Burn Up Assessment of Spent Nuclear Fuel Assemblies. *Transactions*, 117(1), 600-601.
- Baytaş, A. F., Tugrul, A. B., Gökbulak, F., Baydogan, N., Altinsoy, N., Haciyakupoğlu, S., & Camtakan, Z. (2013). Investigation of salt diffusion in soil by using radiotracing technique. *In Defect and Diffusion Forum* (Vol. 334, pp. 274-278). Trans Tech Publications Ltd.

- Beck, M. S., and Williams, R. A., (2012). Process tomography: principles, techniques and applications. Butterworth-Heinemann.
- Beck, M. S., Byars, M., Dyakowski, T., Waterfall, R., He, R., Wang, S. J., & Yang,
  W. Q. (1997). Principles and industrial applications of electrical capacitance tomography. *Measurement and Control*, 30, 197–200.
- Belova I.V., Kulkarni N.Si., Sohn Y.H., Murch G.E., (2014). Simultaneous tracer diffusion and interdiffusion in a sandwich-type configuration to provide the composition dependence of the tracer diffusion coefficients, *Philosophical Magazine*, 94 3560-3573
- Borcea, L. (2002). Electrical impedance tomography. Inverse problems, 18, R99.
- Bratkič, A., Tinta, T., Koron, N., Guevara, S. R., Begu, E., Barkay, T., & Faganeli, J. (2018). Mercury transformations in a coastal water column (Gulf of Trieste, northern Adriatic Sea). *Marine chemistry*, 200, 57-67.
- Buck, A. K., Nekolla, S., Ziegler, S., Beer, A., Krause, B. J., Herrmann, K., ... & Drzezga, A. (2008). Spect/Ct. *Journal of Nuclear Medicine*, 49(8), 1305-1319.
- Carroll, K. C., Artiola, J. F., & Brusseau, M. L. (2006). Transport of molybdenum in a biosolid-amended alkaline soil. *Chemosphere*, 65(5), 778-785.
- Catán, S. P., Guevara, S. R., Marvin-DiPasquale, M., Magnavacca, C., Cohen, I. M.,
   & Arribere, M. (2007). Methodological considerations regarding the use of inorganic 197Hg (II) radiotracer to assess mercury methylation potential rates in lake sediment. *Applied Radiation and Isotopes*, 65(9), 987-994.
- Cheng, L., Ribatski, G., & Thome, J. R. (2008). Two-phase flow patterns and flowpattern maps: fundamentals and applications. *Applied Mechanics Reviews*, 61(5).
- Cusnir, R., Froidevaux, P., Carbonez, P., & Straub, M. (2022). Solid-phase extraction of 225Ac using ion-imprinted resin and 243Am as a radioactive tracer for internal dosimetry and incorporation measurements. *Analytica Chimica Acta*, 1194, 339421.
- Datta, A., Gupta, R. K., Goswami, S., Sharma, V. K., Bhunia, H., Singh, D., & Pant,
  H. J. (2017). Radiotracer investigation on the measurement of residence time distribution in an ethyl acetate reactor system with a large recycle ratio. *Applied Radiation and Isotopes*, 130, 245-251.
- Datta, A., Gupta, R. K., Goswami, S., Sharma, V. K., Bhunia, H., Singh, D., & Pant,H. J. (2019). Residence time distribution measurements in an ethyl acetate

reactor using radiotracer technique. *Journal of Radioanalytical and Nuclear Chemistry*, 320, 711-723.

- Dourado, N. X., Omi, N. M., Somessari, S. L., Genezini, F. A., Feher, A., Napolitano, C. M., & CALVO, W. A. (2019). Preliminary studies on the development of an automated irradiation system for production of gaseous radioisotopes applied in industrial processes.
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1), 1-22.
- Dickin, F., & Wang, M. (1996). Electrical resistance tomography for process applications. *Measurement Science and Technology*, 7, 247.
- Dickin, F. J., Hoyle, B. S., Hunt, A., Huang, S. M., Ilyas, O., Lenn, C., & Beck, M. S. (1992). Tomographic imaging of industrial process equipment: techniques and applications. *IEE Proceedings G-Circuits, Devices and Systems*, 139(1), 72-82.
- Dickson, J., Ross, J., & Vöö, S. (2019). Quantitative SPECT: the time is now. *EJNMMI physics*, 6(1), 1-7.
- Ding, M. (2005). Radiotracer method in study of reactive transport across chemical gradients in porous media. *Journal of radioanalytical and nuclear chemistry*, 264, 489-494.
- Furman, L., Petryka, L., Stęgowski, Z., & Wierzbicki, A. (2003). Data acquisition and processing in radiotracer experiments. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 211(3), 436-442.
- Ganat, T., Hrairi, M., Gholami, R., Abouargub, T., & Motaei, E. (2021). Experimental Investigation of Oil-Water Two-Phase Flow in Horizontal, Inclined, and Vertical Large-Diameter Pipes: Determination of Flow Patterns, Holdup, and Pressure Drop. SPE Production & Operations, 36(04), 946-961.
- Garmroodi, M. D., & Ahmadpour, A. (2020). Numerical simulation of stratified waxy crude oil and water flows across horizontal pipes in the presence of wall heating. *Journal of Petroleum Science and Engineering*, 193, 107458.
- Gauba, V., Bera, T., Reitz, J., Hansen, G., Lee, P., Wileman, C., & Nelson, E. (2017). Investigation and Analysis of Wear in a 3.6 L V6 Gasoline Engine: Phase I-

136

Use of Radioactive Tracer Technology. *SAE International Journal of Fuels* and Lubricants, 10(1), 126-137.

- GE Healthcare,(2018) NM/CT 870 CZT, A Digital SPECT/CT Data Sheet, DOC2109131.
- Gil-Díaz, T., Heberling, F., Keller, V., Fuss, M., Böttle, M., Eiche, E., & Schäfer, J. (2020). Tin-113 and Selenium-75 radiotracer adsorption and desorption kinetics in contrasting estuarine salinity and turbidity conditions. *Journal of environmental radioactivity*, 213, 106133.
- Gitau, J., Gatari, M. J., & Pant, H. J. (2019). Investigation of flow dynamics of porous clinkers in a ball mill using technitium-99m as a radiotracer. *Applied Radiation and Isotopes*, 154, 108902.
- Goh, C. L., Ruzairi, A. R., Hafiz, F. R., & Tee, Z. C. (2017). Ultrasonic tomography system for flow monitoring: A review. *IEEE Sensors Journal*, 17(17), 5382-5390.
- Goswami, S., Pant, H. J., Sharma, V. K., & Varshney, L. (2019). Radiotracer investigation in a pilot-scale fluidized bed coal gasifier (FBCG). *Applied Radiation and Isotopes*, 149, 22-30.
- Goswami, S., Pant, H. J., Poswal, D., Samantray, J. S., & Asolekar, S. R. (2019).
   Investigation of flow dynamics of wastewater in a pilot-scale constructed wetland using radiotracer technique. *Applied Radiation and Isotopes*, 147, 70-75.
- Goswami, S., Pant, H. J., Sheoran, M., Chandra, A., Sharma, V. K., & Bhunia, H. (2020). Residence time distribution measurements in an industrial-scale pulp digester using technetium-99m as radiotracer. *Journal of Radioanalytical and Nuclear Chemistry*, 323, 1373-1379.
- Goswami, S., Manna, S., Suman, S. K., Sharma, V. K., Satpati, S. K., Sahu, M. L., & Pant, H. J. (2022). Investigation of aqueous phase dynamics in a uranium stripping unit using radioactive tracer. *Applied Radiation and Isotopes*, 189, 110404.
- Han, L., Kamalanathan, P., & Al-Dahhan, M. (2021). Study of the detailed catalyst hydrodynamics using radioactive particle tracking technique in a mimicked Fischer-Tropsch slurry bubble column. *Chemical Engineering Science*, 241, 116659.

- Hasan, N. M., & Azzopardi, B. J. (2007). Imaging stratifying liquid–liquid flow by capacitance tomography. *Flow measurement and instrumentation*, 18(5-6), 241-246.
- Hirayama, Y., Okawa, A., Nakamachi, K., Aoyama, T., Okada, Y., Oi, T., ... & Kikawada, Y. (2020). Estimation of water seepage rate in the active crater lake system of Kusatsu-Shirane volcano, Japan, using FDNPP-derived radioactive cesium as a hydrological tracer. *Journal of environmental radioactivity*, 218, 106257.
- Hsieh, J. (2003). Computed tomography: principles, design, artifacts, and recent advances (Vol. 114). SPIE press.
- Hu, H., Jing, J., Vahaji, S., Tan, J., & Tu, J. (2020). Investigation of the Flow Pattern Transition Behaviors of Viscous Oil–Water Flow in Horizontal Pipes. *Industrial & Engineering Chemistry Research*, 59(47), 20892-20902.
- IAEA, (2001), International Atomic Energy Agency. Radiotracer Technology as Applied to Industry, *IAEA-TECDOC-1262*, IAEA, Vienna, Austria.
- IAEA, (2004) International Atomic Energy Agency. Radiotracer Applications in Industry: A Guidebook. Technical reports series (International Atomic Energy Agency); TRS-423. Vienna, Austria.
- IAEA (2008). TECDOC 1589, Industrial Process Gamma Tomography, Final Report of a Coordinated Research Project 2003–2007. International Atomic Energy Agency, Austria.
- IAEA, (1988). Quality Control of Nuclear Medicine Instruments. IAEA-TECDOC-602, IAEA, Vienna.
- Ishizu, K., Mukai, T., Yonekura, Y., Pagani, M., Fujita, T., Magata, Y., ... & Konishi, J. (1995). Ultra-high-resolution SPECT system using four pinhole collimators for small animal studies. *Journal of Nuclear Medicine*, 36(12), 2282-2287.
- Israel, O., Pellet, O., Biassoni, L., De Palma, D., Estrada-Lobato, E., Gnanasegaran, G., ... & Giammarile, F. (2019). Two decades of SPECT/CT-the coming of age of a technology: an updated review of literature evidence. *European journal of nuclear medicine and molecular imaging*, 46(10), 1990-2012.
- Jaćimović, R., & Stibilj, V. (2010). Determination of Q0 and k0 factors for 75Se and their validation using a known mass of Se on cellulose. Nuclear Instruments and Methods in *Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 622(2), 415-418.

- Johansen, G. A. (2005). Nuclear tomography methods in industry. *Nuclear Physics A*, 752, 696–705.
- Jung, S. H., Kim, J. B., Moon, J. H., Park, J. G., Kim, C. H., & Kim, H. S. (2012). Study on the validation of the computer fluid dynamics modeling for a continuously flowing water vessel with the industrial SPECT using a radiotracer. *Applied Radiation and Isotopes*, 70(10), 2471-2477.
- Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M., & Abd El-Samie, F.
  E. (2010). Laboratory experiments and modeling for industrial radiotracer applications. *Applied Radiation and Isotopes*, 68(6), 1049-1056.
- Kasban, H., Ali, E. H., & Arafa, H. (2017). Diagnosing plant pipeline system performance using radiotracer techniques. *Nuclear Engineering and Technology*, 49(1), 196-208.
- Khatooni, A., Rahmani, F., & Abbasi Davani, F. (2019). Calibration curves for on-line leakage detection using radiotracer injection method. *Iranian Journal of Physics Research*, 17(4), 634-634.
- Khorshidi, A., Ashoor, M., Hosseini, S. H., & Rajaee, A. (2012). Evaluation of collimators' response: Round and hexagonal holes in parallel and fan beam. *Progress in biophysics and molecular biology*, 109(3), 59-66.

Kim, J. B. (2014). Principle and Application of SPECT.

- King, M. A., Glick, S. J., Pretorius, P. H., Wells, R. G., Gifford, H. C., Narayanan, M.
   V., & Farncombe, T. R. O. Y. (2004). Attenuation, scatter, and spatial resolution compensation in SPECT. *Emission tomography*. Academic Press, San Diego.
- Koron, N., Bratkič, A., Guevara, S. R., Vahčič, M., & Horvat, M. (2012). Mercury methylation and reduction potentials in marine water: An improved methodology using 197Hg radiotracer. *Applied Radiation and Isotopes*, 70(1), 46-50.
- Lalush, D. S., & Wernick, M. N. (2004). Iterative image reconstruction. In Emission tomography (pp. 443-472). Academic Press.
- Lange, K., & Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. *J Comput Assist Tomogr*, 8(2), 306-16.
- Legoupil, S., Pascal, G., Chambellan, D., & Bloyet, D. (1997). An experimental single photon emission computed tomograph method for dynamic 2D fluid flow analysis. *Applied radiation and isotopes*, 48(10-12), 1507-1514.

- Li, Y., Yang, W., Xie, C. G., Huang, S., Wu, Z., Tsamakis, D., & Lenn, C. (2013). Gas/oil/water flow measurement by electrical capacitance tomography. *Measurement science and technology*, 24(7), 074001.
- Ma, L., & Soleimani, M. (2017). Magnetic induction tomography methods and applications: A review. *Measurement Science and Technology*, 28(7), 072001.
- Maity, A., Grenadier, S. J., Li, J., Lin, J. Y., & Jiang, H. X. (2020). High efficiency hexagonal boron nitride neutron detectors with 1 cm2 detection areas. *Applied Physics Letters*, 116(14), 142102.
- McCready, R., Gnanasegaran, G., & Bomanji, J. B. (2016). A history of radionuclide studies in the UK: 50th anniversary of the British Nuclear Medicine Society. *Springer International Publishing AG*, Switzerland, pp 9-16.
- Melcher, C. L. (1989). Scintillators for well logging applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 40, 1214-1218.
- Meriem-Benziane, M., Bou-Saïd, B., & Abdelkader, B. (2021). A CFD modeling of oil-water flow in pipeline: Interaction analysis and identification of boundary separation. *Petroleum Research*, 6(2), 172-177.
- Mesquita, C. H., Velo, A. F., Calvo, W. P., Carvalho, D. V., & Hamada, M. M. (2020).
   Emission and transmission tomography system applied to analyze industrial process inside chemical reactors. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 954, 161847.
- Mohamad, E. J., Rahim, R. A., Rahiman, M. H. F., Ameran, H. L. M., Muji, S. Z. M., & Marwah, O. M. F. (2016). Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor. *Flow Measurement and Instrumentation*, 47, 62-70.
- Mohamad, E. J. A Segmented Capacitance Tomography for Visualising Material Distributions in Pipeline Conveying Crude Palm Oil. Doctoral dissertation, Universiti Teknologi Malaysia; 2012.
- Mohd Yunos, M. A. S., Hussain, S. A., & Sipaun, S. M. (2019). Industrial radiotracer application in flow rate measurement and flowmeter calibration using 99mTc and 198Au nanoparticles radioisotope. *Applied Radiation and Isotopes*, 143, 24-28.

- Moore, S. C., Kouris, K., & Cullum, I. (1992). Collimator design for single photon emission tomography. *European journal of nuclear medicine*, 19(2), 138-150.
- Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. *The Scientific World Journal*, 2014.
- Othman N., Kamarudin S. K., Takriff, M.S., Rosli M.I., Engku Chik E.M.F., and Adnan M.A.K., Optimization of Integrated Impeller Mixer via Radiotracer Experiments, *The Scientific World Journal*, 242658 (2014a) 8
- Ozanyan, K. B., Wright, P., Stringer, M. R., & Miles, R. E. (2011). Hard-field THz tomography. *IEEE Sensors Journal*, 11, 2507–2513.
- Ozsahin, I., Uzun, B., Isa, N. A., Mok, G. S., & Ozsahin, D. U. (2018, November). Comparative Analysis of the common scintillation crystals used in nuclear medicine imaging devices. *In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)* (pp. 1-4). IEEE.
- Pant H.J., Sharma V.K., Nair A.G.C., Tomar B.S., Nathaniel T.N., Reddy A.V.R., Singh G., (2009). Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs, *Applied Radiation and Isotopes*, 67 1591-1599.
- Pant, H. J., Goswami, S., Samantray, J. S., Sharma, V. K., & Maheshwari, N. K. (2015). Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique. *Applied Radiation and Isotopes*, 103, 54-60.
- Pant, H. J. (2021). Applications of the radiotracer in the industry: A review. *Applied Radiation and Isotopes*, 110076.
- Pant, H. J., Bhardwaj, Y. K., Kumar, U., & Pujari, P. K. (2022). Applications of radioisotopes and radiation technology in industry: current status and prospects. *CURRENT SCIENCE*, 123(3), 377-387.
- Park, J. G., Seo, H., Kim, C. H., Jung, S. H., Kim, J. B., Moon, J., & Kim, Y. S. (2011). "Double-layer" method to improve image quality of industria SPECT. *Journal of Instrumentation*, 6(12), C12032.
- Park, J. G., Kim, C. H., Kim, J. B., Moon, J., & Jung, S. H. (2011a). Effect of the Number of Detectors on Image Quality in Industrial SPECT. *Transactions of the Korean Nuclear Society*; Gyeongju, Korea.
- Park, J. G., Kim, C. H., Han, M. C., Jung, S. H., Kim, J. B., & Moon, J. (2013). Optimization of detection geometry for industrial SPECT by Monte Carlo simulations. *Journal of Instrumentation*, 8(04), C04006.

- Park, J. G., Jung, S. H., Kim, J. B., Moon, J., & Kim, C. H. (2013a). Influence of void on image quality of industrial SPECT. *Journal of Instrumentation*, 8(12), P12011.
- Park, J. G., Jung, S. H., Kim, J. B., Moon, J., Yeom, Y. S., & Kim, C. H. (2014). Performance evaluation of advanced industrial SPECT system with diverging collimator. *Applied Radiation and Isotopes*, 94, 125-130.
- Park, J. G., Jung, S. H., Kim, J. B., Moon, J., Han, M. C., & Kim, C. H. (2014a). Development of advanced industrial SPECT system with 12-gonal divergingcollimator. *Applied Radiation and Isotopes*, 89, 159-166.
- Park, J. G., Jung, S. H., Kim, J. B., Moon, J., & Kim, C. H. (2015). Development of a SPECT system for industrial process flow measurement using diverging collimators. *Nuclear Technology*, 192(2), 133-141.
- Petrik, V., Apok, V., Britton, J. A., Bell, B. A., & Papadopoulos, M. C. (2006). Godfrey Hounsfield and the dawn of computed tomography. Neurosurgery, 58(4), 780-787.
- Peña, H. V., & Rodriguez, O. M. H. (2015). Applications of wire-mesh sensors in multiphase flows. *Flow measurement and instrumentation*, 45, 255-273.

Pelowitz, D. B. (2008). MCNPX user's manual version 2.6. Report LA-CP-07-1473.

- Perera, K., Pradeep, C., Mylvaganam, S., & Time, R. W. (2017). Imaging of oil-water flow patterns by electrical capacitance tomography. *Flow Measurement and Instrumentation*, 56, 23-34.
- Piroozian, A., Hemmati, M., Ismail, I., Manan, M. A., Rashidi, M. M., & Mohsin, R. (2017). An experimental study of flow patterns pertinent to waxy crude oilwater two-phase flows. *Chemical Engineering Science*, 164, 313-332.
- Rahman, N. A. A., Rahim, R. A., Nawi, A. M., Ling, L. P., Pusppanathan, J., Mohamad, E. J., ... & Yunus, F. R. M. (2015). A review on electrical capacitance tomography sensor development. *Jurnal Teknologi*, 73(3).
- Reinecke, N., Petritsch, G., Boddem, M., & Mewes, D. (1998). Tomographic imaging of the phase distribution in two-phase slug flow. *International journal of multiphase flow*, 24(4), 617-634.
- Ren, S., Liu, H., Tan, C., & Dong, F. (2017). Tomographic wire-mesh imaging of water-air flow based on sparse minimization. *IEEE Sensors Journal*, 17(24), 8187-8195.

- Rhodes, C. J. (2012). Muonium–the second radioisotope of hydrogen: A remarkable and unique radiotracer in the chemical, materials, biological and environmental sciences. *Science Progress*, 95(2), 101-174.
- Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction for emission tomography. *IEEE transactions on medical imaging*, 1(2), 113-122.
- Skjefstad, H. S., & Stanko, M. (2019). Experimental performance evaluation and design optimization of a horizontal multi-pipe separator for subsea oil-water bulk separation. *Journal of Petroleum Science and Engineering*, 176, 203-219.
- Smithers, D. W., (1951). Some varied applications of radioactive isotopes to the localization and treatment of tumors. *Acta Radiol*. 35(1):49–61.
- Sorenson, J. A., & Phelps, M. E. (1987). Physics in nuclear medicine (pp. 115-121). New York: Grune & Stratton.
- Sommer, A. E., Ortmann, K., Van Heerden, M., Richter, T., Leadbeater, T., Cole, K., & Eckert, K. (2020). Application of Positron Emission Particle Tracking (PEPT) to measure the bubble-particle interaction in a turbulent and dense flow. *Minerals Engineering*, 156, 106410.
- Stęgowski, Z., Dagadu, C. P., Furman, L., Akaho, E. H., Danso, K. A., Mumuni, I. I., & Amoah, C. (2010). Determination of flow patterns in industrial gold leaching tank by radiotracer residence time distribution measurement. *Nukleonika*, 55(3), 339-344.
- Su, Q., Li, J., & Liu, Z. (2022). Flow Pattern Identification of Oil–Water Two-Phase Flow Based on SVM Using Ultrasonic Testing Method. *Sensors*, 22(16), 6128.
- Sugiharto, S. (2021). Radiotracer method: A nuclear tool for *flowrate measurement in the pipeline. In Journal* of Physics: Conference Series (Vol. 1760, No. 1, p. 012021). IOP Publishing.
- Sukhoruchkin S.I., Soroko Z.N., Neutron Resonance Parameters for Ag-110m (Silver), *Elementary Particles, Nuclei and Atoms*, 24 (2009) 2365
- Susiapan, Y., Rahim, R. A., Zain, R. M., Wahab, A. R., Wahid, H., Ishak, M. H. I., ... & Ling, L. P. (2015). STABILITY TEST FOR NaI (TI) SCINTILLATION DETECTOR. Jurnal Teknologi, 77(17).
- Tan, C., Li, X., Liu, H., & Dong, F. (2019). An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging. *IEEE Transactions* on Industrial Electronics, 66(12), 9539-9548.

- Takata H., Tagami K., Aono T., Uchida S., (2014). Distribution coefficients (Kd) of strontium and significance of oxides and organic matter in controlling its partitioning in coastal regions of Japan, *Science of The Total Environment*, 490, 979–986
- Tan, J., Jing, J., Hu, H., & You, X. (2018). Experimental study of the factors affecting the flow pattern transition in horizontal oil–water flow. *Experimental Thermal* and Fluid Science, 98, 534-545.
- TECDOC, I. A. (2008). 1589, Industrial Process Gamma Tomography, Final Report of a Coordinated Research Project 2003–2007. International Atomic Energy Agency, Austria.
- Torres, C. F., Mohan, R. S., Gomez, L. E., & Shoham, O. (2016). Oil-water flow pattern transition prediction in horizontal pipes. *Journal of Energy Resources Technology*, 138(2).
- Trallero, J. L. *Oil-water flow patterns in horizontal pipes*; Ph. D. Thesis, The University of Tulsa; 1996.
- Varga, K., Szalóki, I., Gáncs, L., & Marczona, R. (2002). Novel application of an insitu radiotracer method for the study of the formation of surface adlayers in the course of Cr (VI) reduction on a gold electrode. *Journal of Electroanalytical Chemistry*, 524, 168-175.
- Varela, J. (2004). Electronics and data acquisition in radiation detectors for medical imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 527(1-2), 21-26.
- Vieira, W. S., Brandão, L. E. B., & Braz, D. (2014). An alternative method for tracking a radioactive particle inside a fluid. *Applied Radiation and Isotopes*, 85, 139-146.
- Wang, M. (2005). Impedance mapping of particulate multiphase flows. Flow Measurement and Instrumentation, 16(2-3), 183-189.
- Wang, G., Yu, H., & De Man, B. (2008). An outlook on x-ray CT research and development. *Medical physics*, 35, 1051–1064.
- Wernick, M. N., & Aarsvold, J. N. (2004). Emission tomography: the fundamentals of PET and SPECT. Elsevier.

- Wetchagarun, S., Petchrak, A., & Tippayakul, C. (2015). Preliminary study of the use of radiotracers for leak detection in industrial applications. *In Journal of Physics: Conference Series* (Vol. 611, No. 1, p. 012018). IOP Publishing.
- Willowson, K. P. (2019). Production of radionuclides for clinical nuclear medicine. *European Journal of Physics*, 40(4), 043001.
- Yakkala, K., Chappa, S., Rathod, P. B., Gurijala, R. N., & Pandey, A. K. (2021). Silver nanoparticles embedded cation-exchange membrane for remediation of Hg species and application as the dip catalyst in organic transformation. *Materials Today Chemistry*, 22, 100547.
- Yao, J., & Takei, M. (2017). Application of process tomography to multiphase flow measurement in industrial and biomedical fields: A review. *IEEE Sensors Journal*, 17(24), 8196-8205.
- Yelgaonkar, V. N., Jayakumar, T. K., Singh, S., & Sharma, M. K. (2009). Combination of sealed source and radiotracer technique to understand malfunctioning in a chemical plant. *Applied Radiation and Isotopes*, 67(7-8), 1244-1247.
- Yunos, M. A. S. M., Hussain, S. A., & Sipaun, S. M. (2019). Industrial radiotracer application in flow rate measurement and flowmeter calibration using 99mTc and 198Au nanoparticles radioisotope. *Applied Radiation and Isotopes*, 143, 24-28.
- Yunos, M. A. S. M., Sipaun, S. M., & Hussain, S. A. (2019b). Feasibility of Using Radioactive Particle Tracking as an Alternative Technique for Experimental Investigation in Bubble Column Reactor. *In IOP Conference Series: Materials Science and Engineering* (Vol. 554, No. 1, p. 012005). IOP Publishing.
- Yunus, A. C. (2010). Fluid Mechanics: Fundamentals and Applications (Si Units). Tata McGraw Hill Education Private Limited.
- Yusoff, N. H. *Stratifying of liquid-liquid two phase flows through sudden expansion*. Doctoral dissertation, University of Nottingham. 2012.
- Zakaria, K. M. (2018). Radiological Impacts of Norm and Poly Aromatic Hydrocarbon in Petroleum Industry Process on Marine Ecosystem at the Red Sea, *Egypt. Environ. Anal. Ecol. Stud.*, 1(4).
- Zhang, D., Zhang, H., Rui, J., Pan, Y., Liu, X., & Shang, Z. (2020). Prediction model for the transition between oil-water two-phase separation and dispersed flows in horizontal and inclined pipes. *Journal of Petroleum Science and Engineering*, 192, 107161.

#### APPENDIX A

#### LIST OF PUBLICATION AND AWARDS

#### **Publications**

- Ithnin, H., Mohamad, E.J., Lip, N.M., Yusoff, N.H. (2022). Industrial SPECT System for Imaging Water Level Inside a Horizontal Pipe. In: Wahab, N.A., Mohamed, Z. (eds) Control, Instrumentation and Mechatronics: Theory and Practice. Lecture Notes in Electrical Engineering, vol 921, (pp. 310-320). Springer, Singapore
- Ithnin, H., Mohamad, E. J., Lip, N. M., Mustapha, I., & Hizam, N. (2022). Industrial SPECT simulation for imaging radiotracer distribution in a pipeline using MCNPX code. Sci. Technol. Res. Tech. Bull, 15, 10-15.
- Ithnin, H., Mohamad, E. J., Lip, N. M., & Yusoff, N. H. (2021). MCNPX Modelling and Simulation of Point-source Detection using Different iSPECT Geometrical Arrangement. ELEKTRIKA-Journal of Electrical Engineering, 20(2-3), 103-106.
- Ithnin, H., Mohamad, E. J., Yusoff, N. H., & Lip, N. M. (2020, September). An Experimental Gamma-ray Emission Computed Tomography System for Intensity Mapping of An Isotropic Sealed Source. In 2020 IEEE Student Conference on Research and Development (SCOReD) (pp. 306-309). IEEE.
- Ithnin, H., Mohamad, E. J., Yusoff, N. H., Hassan, H., & Lip, N. M. (2020, April). Development of industrial single photon emission computed tomography (ISPECT). In "IOP Conference Series: Materials Science and Engineering" (Vol. 785, No. 1, p. 012024). IOP Publishing.

 Ithnin, H., Mohamad, E. J., Yusoff, N. H., Hassan, H., & Lip, N. M. (2018). Study on influence of different gamma-ray energy on images of an industrial CT system, "International Journal of Integrated Engineering," 10(4), p. 102-104.

#### Award

 Gold Medal "Software and Simulation for iSPECT System" at The International Research and Symposium and Exposition (RISE) 2022. Universiti Tun Hussein Onn Malaysia (UTHM). Virtual Platform.