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 ABSTRACT 

ABSTRACT 

This research aims to provide thorough planning of magnetic field (MF) level 

measurement execution in a residential area within the vicinity of overhead 

transmission lines (OTL). The expected outcome of the measurement is to provide a 

meticulous set of MF level profiling radiated from OTL in a large area. The MF level 

profiling recorded can also determine whether it complies with the MF exposure 

limit of 100 µT as provided by the International Commission of Non-Ionizing 

Radiation Protection (ICNIRP). Conducted in Kolej Kediaman Bestari UTHM as a 

case study, MF radiation from 132 kV and 275 kV power lines in that area are 

recorded throughout three different stages of development (during construction, after 

construction while vacant, and after construction while occupied). The MF at a 

maximum of 1 µT is recorded throughout the measurements, and the presence of MF 

level radiation from sources other than the OTL is observed.  In addition to that, a 

few solutions for reducing MF radiation from OTL systems are proposed, which are 

the implementation of conductor phase rearrangements, reconductoring and 

composite cross-arms. These solutions heavily emphasize the modifications of 

existing OTL systems, which also provide the opportunity to improve ampacity. Data 

regarding these solutions are obtained through mathematical calculation and Ansys 

Maxwell engineering software simulation based on IEEE standards, CIGRE and 

other researchers. By analysing these data, existing OTL systems in Malaysia can be 

enhanced with the correct combination of solutions, up to 65% MF reduction or up to 

52% ampacity increment. Therefore, this research's MF level measurement planning 

can serve as a guideline for personal and commercial gains. The solutions proposed 

can offer a healthier living environment while coping with the increasing electricity 

demands.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



   vi 
 

 ABSTRAK 

ABSTRAK 

Kajian ini bertujuan menyediakan perancangan pengukuran aras medan magnet 

secara teliti dalam kawasan kediaman berhampiran dengan talian penghantaran atas 

kepala (OTL). Hasil pengukuran dijangka memberikan satu set profil aras medan 

magnet yang teliti dalam kawasan yang luas akibat radiasi daripada OTL. 

Pemprofilan tahap medan magnet yang direkodkan juga boleh digunakan untuk 

menentukan sama ada ia mematuhi had pendedahan medan magnet 100 µT seperti 

yang ditetapkan oleh International Commision of Non-Ionizing Radiation Protection 

(ICNIRP). Menggunakan Kolej Kediaman Bestari UTHM sebagai kajian kes, radiasi 

medan magnet daripada talian kuasa 132 kV dan 275 kV di kawasan tersebut 

direkodkan dalam tiga peringkat pembangunan yang berbeza (semasa pembinaan, 

selepas pembinaan tanpa penghuni, dan selepas pembinaan dengan penghuni). 

Sepanjang pengukuran, medan magnet setinggi 1 µT direkodkan, dan kehadiran 

radiasi medan magnet daripada sumber lain diperhatikan. Di samping itu, beberapa 

penyelesaian ke arah pengurangan radiasi medan magnet daripada sistem OTL 

dicadangkan, menerusi perlaksanaan penyusunan semula fasa kabel, penggantian 

kabel dan composite cross-arm. Penyelesaian ini menekankan kepada 

pengubahsuaian sistem OTL sedia ada, yang juga membuka peluang untuk 

meningkatkan kadaran arus. Data mengenai penyelesaian ini diperolehi melalui 

pengiraan matematik dan simulasi menggunakan perisian kejuruteraan Ansys 

berdasarkan piawaian IEEE, CIGRE dan penyelidik lain. Dengan menganalisis data 

ini, sistem OTL sedia ada di Malaysia boleh dipertingkatkan menggunakan gabungan 

penyelesaian yang sesuai, sehingga 65% pengurangan medan magnet atau sehingga 

52% peningkatan kadaran arus. Oleh itu, perancangan pengukuran aras medan 

magnet yang dibentangkan dalam penyelidikan ini boleh dijadikan garis panduan 

bagi kepentingan peribadi atau komersial, manakala penyelesaian yang dicadangkan 

boleh menawarkan persekitaran hidup yang lebih sihat di samping sebagai 

persediaan menghadapi permintaan elektrik yang semakin meningkat.  
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Al - aluminium 

CCA - composite cross-arms 

COVID-19 - coronavirus disease 

CWT - conductor working temperature 

DNA - deoxyribonucleic 

EF - electric field 

ELF - extremely low frequency 

EMF - electromagnetic field 

FOS - factor of safety 

MCO - movement control order 
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MF - magnetic field 

N/A - not available 

OH - hydroxyl 

OTL - overhead transmission line 

PMU - primary intake substation 

RMS - root-mean-square 

ROW - right-of-way 

RYB - red-yellow-blue 

St - steel 

AAAC - All Aluminium Alloy Conductor 

AAC - All Aluminium Conductor 

ACAR - Aluminium Conductor Alloy Reinforced 

ACCC/TW - Aluminium Conductor Composite Core / 

Trapezoidal Wire 

ACCR - Aluminium Conductor Composite Reinforced 

ACSR - Aluminium Conductor Steel Reinforced 

ACSS - Aluminium Conductor Steel Supported 

BOLD® - Breakthrough Overhead Line Design 

BSI - British Standards International 

CEGB - Central Electricity Generating Board 

CIGRE - International Council for Large Electric 

Systems 

DOSM - Department of Statistics Malaysia 

GTACSR - Gap-Type Thermal Resistant Aluminium 

Alloy Conductor Steel Reinforced 

GUI - graphical user interface 

HTLS - High-Temperature Low Sag 

IARC - International Agency for Research on Cancer 

ICNIRP - International Commission on Non-Ionizing 

Radiation Protection 

IEEE - Institute of Electrical and Electronics 

Engineers 

KKB - Kolej Kediaman Bestari UTHM 

MEIH - Malaysia Energy Information Hub 
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ST - Suruhanjaya Tenaga

TNB - Tenaga Nasional Berhad

USA - United States of America

UTHM - Universiti Tun Hussein Onn Malaysia

ZTACIR - Super Thermal Resistant Aluminium Alloy

Conductor Steel Reinforced
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