ONSITE MEASUREMENT TECHNIQUES AND MODELLING TO MINIMIZE MAGNETIC FIELD STRENGTH UNDER OVERHEAD TRANSMISSION LINES

LUQMAN HAKIM BIN MAHMOD

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

DECEMBER 2022

Dedicated to my dearest family especially *Mama* and *Abah* iii

ACKNOWLEDGEMENT

Above all, I pray to Allah the Almighty for His Kindness and Blessing throughout my journey upon completing this thesis.

I want to express my sincere gratitude to my academic supervisor, Assoc. Prof. Dr. Md Nor Ramdon bin Baharom for his constant invaluable guidance, encouragement, patience, and understanding through and through securing the success of this research.

Special thanks to the Ministry of Higher Education Malaysia and Universiti Tun Hussein Onn Malaysia for their sponsorship and financial support, especially RMC and EMCenter. Not to forget, FKEE staffs and personnel of which provided a lending hand in every technical aspect.

The highest honour I give to my parents, family, and wife for their neverending support and trust in every way imaginable, for every up and down, they are there for me to rely on.

There are no words sufficient to describe my appreciation and gratitude to all those who have supported me. In all humbleness, I say thank you.

ABSTRACT

This research aims to provide thorough planning of magnetic field (MF) level measurement execution in a residential area within the vicinity of overhead transmission lines (OTL). The expected outcome of the measurement is to provide a meticulous set of MF level profiling radiated from OTL in a large area. The MF level profiling recorded can also determine whether it complies with the MF exposure limit of 100 µT as provided by the International Commission of Non-Ionizing Radiation Protection (ICNIRP). Conducted in Kolej Kediaman Bestari UTHM as a case study, MF radiation from 132 kV and 275 kV power lines in that area are recorded throughout three different stages of development (during construction, after construction while vacant, and after construction while occupied). The MF at a maximum of 1 µT is recorded throughout the measurements, and the presence of MF level radiation from sources other than the OTL is observed. In addition to that, a few solutions for reducing MF radiation from OTL systems are proposed, which are the implementation of conductor phase rearrangements, reconductoring and composite cross-arms. These solutions heavily emphasize the modifications of existing OTL systems, which also provide the opportunity to improve ampacity. Data regarding these solutions are obtained through mathematical calculation and Ansys Maxwell engineering software simulation based on IEEE standards, CIGRE and other researchers. By analysing these data, existing OTL systems in Malaysia can be enhanced with the correct combination of solutions, up to 65% MF reduction or up to 52% ampacity increment. Therefore, this research's MF level measurement planning can serve as a guideline for personal and commercial gains. The solutions proposed can offer a healthier living environment while coping with the increasing electricity demands.

ABSTRAK

Kajian ini bertujuan menyediakan perancangan pengukuran aras medan magnet secara teliti dalam kawasan kediaman berhampiran dengan talian penghantaran atas kepala (OTL). Hasil pengukuran dijangka memberikan satu set profil aras medan magnet yang teliti dalam kawasan yang luas akibat radiasi daripada OTL. Pemprofilan tahap medan magnet yang direkodkan juga boleh digunakan untuk menentukan sama ada ia mematuhi had pendedahan medan magnet 100 µT seperti yang ditetapkan oleh International Commision of Non-Ionizing Radiation Protection (ICNIRP). Menggunakan Kolej Kediaman Bestari UTHM sebagai kajian kes, radiasi medan magnet daripada talian kuasa 132 kV dan 275 kV di kawasan tersebut direkodkan dalam tiga peringkat pembangunan yang berbeza (semasa pembinaan, selepas pembinaan tanpa penghuni, dan selepas pembinaan dengan penghuni). Sepanjang pengukuran, medan magnet setinggi 1 µT direkodkan, dan kehadiran radiasi medan magnet daripada sumber lain diperhatikan. Di samping itu, beberapa penyelesaian ke arah pengurangan radiasi medan magnet daripada sistem OTL dicadangkan, menerusi perlaksanaan penyusunan semula fasa kabel, penggantian kabel dan composite cross-arm. Penyelesaian ini menekankan kepada pengubahsuaian sistem OTL sedia ada, yang juga membuka peluang untuk meningkatkan kadaran arus. Data mengenai penyelesaian ini diperolehi melalui pengiraan matematik dan simulasi menggunakan perisian kejuruteraan Ansys berdasarkan piawaian IEEE, CIGRE dan penyelidik lain. Dengan menganalisis data ini, sistem OTL sedia ada di Malaysia boleh dipertingkatkan menggunakan gabungan penyelesaian yang sesuai, sehingga 65% pengurangan medan magnet atau sehingga 52% peningkatan kadaran arus. Oleh itu, perancangan pengukuran aras medan magnet yang dibentangkan dalam penyelidikan ini boleh dijadikan garis panduan bagi kepentingan peribadi atau komersial, manakala penyelesaian yang dicadangkan boleh menawarkan persekitaran hidup yang lebih sihat di samping sebagai persediaan menghadapi permintaan elektrik yang semakin meningkat.

CONTENTS

TITI	TITLE				
DEC	DECLARATION				
DED	ICATION	ш			
ACK	NOWLEDGEMENT	IV			
ABS	TRACT	V			
ABS' CON	TRAK NTENTS	VI VII			
LIST	T OF TABLES	XII			
LIST	T OF FIGURES	XV			
LIST	LIST OF SYMBOLS AND ABBREVIATIONS				
LIST	FOF APPENDICES	XXVI			
СНА	PTER 1	1			
1.1	Background of study	1			
1.2	Problem statement	5			
1.3	Objectives	7			
1.4	Scope of study	7			
1.5	1.5 Research contribution				
1.6	Thesis organization	9			
СНА	CHAPTER 2				
2.1	Overview of literature review	11			

	2.2	Magnetic field concerns	11
		2.2.1 Concerns about magnetic field adverse	
		health effects towards human	12
		2.2.2 Guidelines of the magnetic field limit	
		exposure	15
		2.2.3 Available standards for measurement of	
		the magnetic field from overhead	
		transmission lines	17
,	2.3	Improving existing overhead transmission line	
		systems	23
		2.3.1 Overhead transmission line towers	24
		2.3.2 Overhead transmission line conductors	28
		2.3.3 Overhead transmission line insulators	32
		2.3.4 Overhead transmission line cross-arms	35
		2.3.5 Clearances	38
		2.3.6 Summary of the overhead transmission	
		line improvement methods in the	
		previous work-study	41
	2.4	Methods of obtaining conductors' ampacity,	
		maximum sag and MF level	43
		2.4.1 Steady-state heat balance equation	43
		2.4.2 Sag-tension parabolic equation	45
		2.4.3 Magnetic field radiation level simulation	50
,	2.5	Research gap	52
	2.6	Chapter summary	53
	СНАР	PTER 3	54
	3.1	Overview of research methodology	54
	3.2	Case Studies – Measurement planning and	
		procedures for magnetic field level from the	
		overhead transmission line	57
		3.2.1 Measurement planning for magnetic field	
		level from the overhead transmission	
		line	59

viii

	3.2.2 Magnetic field level measurement	
	equipment	60
	3.2.3 Area zoning	63
	3.2.4 Measurement procedures for magnetic	
	field level from the overhead	
	transmission line	65
	3.2.5 Mock measurement	70
	3.2.6 Time management	72
	3.2.7 Conduct measurement	73
3.3	Improvement of ampacity and maximum sag for	
	existing 132 kV and 275 kV overhead	
	transmission lines	73
	3.3.1 Ampacity calculation parameters	76
	3.3.2 Maximum sag calculation parameters	78
3.4	Improvement of magnetic field level for	
	existing 132 kV and 275 kV overhead	
	transmission lines	80
	3.4.1 Basic design simulation	80
	3.4.2 Conductor phase configuration	84
	3.4.3 The magnetic field radiation level at	
	maximum conductor working	
	temperature	86
	3.4.4 Reconductoring method simulation	
	application	86
	3.4.5 Composite cross-arm method application	87
3.5	Chapter summary	88
СН	APTER 4	89
4.1	Overview of results	89
4.2	Case Study – Kolej Kediaman Bestari UTHM	89
	4.2.1 Case Study 1 – Magnetic field	
	measurement during construction work	90
	4.2.2 Case Study 2 – Magnetic field	
	measurement after construction (vacant)	101

ix

	4.2.3 Case Study 3 – Magnetic field	
	measurement after construction	
	(occupied)	111
	4.2.4 Case Study 4 – Magnetic field	
	measurement after construction (inside	
	buildings)	120
	4.2.5 Discussion - Magnetic field measurement	
	planning and procedures	122
	4.2.6 Discussion – Magnetic field level	
	profiling across all case studies	123
4.3	Ampacity and the maximum sag calculation	
	result	125
	4.3.1 Reconductoring technique ampacity	
	calculation result comparison for 132 kV	
	and 275 kV overhead transmission lines	125
	4.3.2 Reconductoring technique maximum sag	
	calculation result comparison for 132 kV	
	and 275 kV overhead transmission lines	133
	4.3.3 Combined reconductoring and composite	
	cross-arm techniques for ampacity and	
	maximum sag improvement	141
DER 4.4	Magnetic field simulation result	143
	4.4.1 Reconductoring technique magnetic field	
	simulation result comparison for 132 kV	
	and 275 kV overhead transmission lines	144
	4.4.2 Composite cross-arm technique magnetic	
	field simulation result comparison	153
CHA	PTER 5	158
5.1	Conclusion	158
	5.1.1 Magnetic field radiation level	
	measurement procedures enhancement	158

х

5.1.2 Magnetic field level profiling in all case studies in compliance with the

International Commission on Non-	
Ionizing Radiation Protection	159
5.1.3 Verification of modelling and simulation	
of ampacity, maximum sag and	
magnetic field for 132 kV and 275 kV	
overhead transmission line systems	160
5.1.4 Improvement of existing overhead	
transmission line system by	
reconductoring and composite cross-arm	
methods	161
5.2 Recommendation for future work	163
REFERENCES	165
APPENDICES	173

LIST OF TABLES

2.1	Reference levels for public and occupational exposure	
	to 50 Hz MF from OTL in different countries [41][42]	16
2.2	Requirement of minimum creepage distance and	
	insulator length for 400 kV L2U tower specified by the	
	National Grid Company, UK [69]	34
2.3	OTL systems required ROW width and ground	
	clearance [74]	39
2.4	Previous works for OTL improvements	42
3.1	Test results of high amps wireless transfer using loop	
	antenna method in three directions.	62
3.2	Time estimation to conduct spot measurement method	
	and path measurement method in all zones	72
3.3	ACSR Drake (26/7) conductor's ampacity calculation	
	comparison between IEEE Std 738-2012, [22] and T.	
	Ridley et al., [47]	76
3.4	Ampacity calculation parameters according to	
	Malaysia's geographical factors	78
3.5	ACSR Drake (26/7) conductor's sag calculation	
	comparison between CIGRE SCB2/WG 12.03 [23] and	
	CEGB practice [24]	78
3.6	Maximum sag calculation parameters relevant to	
	Malaysia's geographical factors [64]	79
3.7	Ansys Maxwell simulation design parameters by S.	
	Vornicu et al. [66]	81
3.8	Conductors' position for 2D MF simulation model	
	using Ansys Maxwell software based on typical 132 kV	
	and 275 kV towers' dimension in Malaysia	84

3.9	Phase configuration arrangements characterization.	85
3.10	MF radiation simulation properties	86
4.1	MF level measurements inside Blocks 1 to 9	121
4.2	MF level measurements inside every room of Block 1	122
4.3	132 kV OTL system selected conductors' ampacity	
	comparison	131
4.4	275 kV OTL system selected conductors' ampacity	
	comparison	132
4.5	132 kV OTL system selected conductors' maximum	
	sag comparison	138
4.6	275 kV OTL system selected conductors' maximum	
	sag comparison	140
4.7	Compiled calculation of selected conductors' ampacity	
	and maximum sag for 132 kV OTL system	142
4.8	Compiled calculation of selected conductors' ampacity	
	and maximum sag for 275 kV OTL system	142
4.9	Maximum ampacity improvement with CCA technique	
	implementation for 132 kV and 275 kV	143
4.10	132 kV OTL system selected conductors' MF radiation	
	comparison at 75°C CWT by reconductoring technique	148
4.11	275 kV OTL system selected conductors' MF radiation	
	comparison at 75°C CWT by reconductoring technique	150
4.12	Selected conductors for 132 kV and 275 kV OTL	
	systems characteristics compilation	151
4.13	MF radiation level comparison between ACSR Batang,	
	AAAC Upas and 3M ACCR Dove at different CWT	152
4.14	MF radiation level comparison between ACSR Zebra,	
	AAAC Yew and 3M ACCR Drake at different CWT	153
4.15	Selected conductors MF improvement using CCA for	
	132 kV and 275 kV OTL system	156
4.16	Chosen conductors MF radiation with and without the	
	implementation of CCA comparisons for 132 kV and	
	275 kV OTL system	157
7.1	Solar azimuth constant, C [47]	177

7.2	Parameters for the steady-state heat balance equation	
	verification procedures as provided by IEEE Std 738-	
	2012 [22]	178
7.3	Parameters for the sag-tension parabolic equation	
	verification procedures as provided CIGRE SCB2/WG	
	12.03 in [23]	189
7.4	Iteration calculations for parameters required in sag-	
	tension parabolic equation verification procedures	191
7.5	S. Vornicu et al. conductors' parameters for 2D MF	
	distribution level simulation using Ansys Maxwell	
	software [66]	194

xiv

LIST OF FIGURES

1.1	Human population growth and final electricity	
	consumption projection in Malaysia from the year 2000	
	until 2040 [1]–[4]	2
1.2	Utilization of OTL's ROW as parking lots at; (a)	
	Square One Shopping Mall Batu Pahat, and (b) Kolej	
	Kediaman Bestari UTHM	3
2.1	MF meter calibration circuit diagram [13]	18
2.2	MF measurement at multiple heights above ground	
	level by Medved, D. et al. in [43]	19
2.3	Example of MF measurement plan according to IEEE	
	Std 644-1994 and BS EN 62110:2009 [13][14]	20
2.4	Illustration for lateral and longitudinal profiles of MF	
	measurements by Jimbin, S.V. and Ahmad, N.A. [46]	22
2.5	Main components of OTL that consist of (a) towers,	
	conductors, insulators, cross-arms and (b) danger and	
	phase plates	24
2.6	Typical guy-supported steel lattice tower [49]	25
2.7	Angle and strain tower structure	25
2.8	Aesthetic tower design; (a) Mickey Pylon, and (b)	
	BOLD [®] tower [42][43]	26
2.9	Typical 132 kV and 275 kV double-circuit suspension	
	tower dimensions in Malaysia [46][53][54]	27
2.10	Examples of conductor wire strands arrangement for	
	homogenous conductors and non-homogenous	
	conductors [47][55]	28

2.11	Symmetrical arrangement of conductor circuits in (a)	
	and variation of phase configuration arrangements in;	
	(b) $BYR - R'Y'B'$, and (c) $YBR - R'Y'B'$ [64]	31
2.12	Suspension and tension insulators on suspension and	
	angle towers [64]	33
2.13	Creepage and flashover distance for insulators of; (a)	
	Type A $-$ long rod insulators, and (b) Type B $-$ cap and	
	pin insulators [68]	33
2.14	CCA prototype in a trial site located in Scotland [21]	36
2.15	Example of 380 kV OTL tower equipped with CCA	
	(left) in parallel with existing 150 kV OTL (right) [71]	36
2.16	The three types of CCA design by M.N.R. Baharom;	
	(a) fully profiled, (b) lightly profiled with very short	
	insulators, and (c) non-profiled with short insulators	
	[69]	37
2.17	Clearances representation for 132 kV OTL system [74]	39
2.18	Characteristics of sag [75]	40
2.19	Parabola curve of conductor sag	46
2.20	Engineering software result comparison between; (a)	
	FEMM 4.2 vs PowerMag [77], and (b) Ansys Maxwell	
	vs PowerMag [66]	51
2.21	Example of MF radiation simulation from ACSR	
	Batang conductors using Ansys Maxwell	51
3.1	Overall flowchart of the methodology	56
3.2	KKB original plan layout	57
3.3	Case Study 1 environment showing the development	
	stages of building blocks and the area nearby 132 kV	
	and 275 kV OTL systems	58
3.4	KKB MF level measurement planning process	60
3.5	Measurement equipment used; (a) Gauss Meter, (b)	
	EMDEX II Meter, and (c) LINDA Wheel	61
3.6	High amps wireless transfer using loop antenna method	
	for equipment testing (equipment sensor in Direction 1)	61

xvi

3.7	Safety equipment is worn to avoid fatal accidents due	
	to (a) falling construction debris from above and (b)	
	heavy machinery	62
3.8	KKB plan layout in Case Study 1	64
3.9	Spot measurement designations in Zone 1 and 2	66
3.10	Spot measurement markings; (a) 132 kV conductor	
	mid-span spot designation in Case Study 1, (b) and (c)	
	additional marking features applied on the ground in	
	Case Study 1, and (d) and (e) spray paint markings in	
	Case Study 3	67
3.11	Pictures of; (a) location of Block 1 and 275 kV OTL	
	tower, (b) inside look of the rooms in Case Study 4, and	
	(c) ground floor plan layout for Block 1	68
3.12	Path measurement method conducted in different	
	situations; (a) more than 0.2 m from building wall due	
	to obstacles in Case Study 1, and (b) 0.2 m from	
	building wall in Case Study 3	69
3.13	Path measurement designation points for Zone 3 to	
	Zone 8	70
3.14	MF level mock measurement comparison between	
	EMDEX II Meter and Gauss Meter	71
3.15	Overall steady-state heat balance equation, parabolic	
	solution equation, and Ansys Maxwell simulation	
	design parameters	75
3.16	Ansys Maxwell 2D OTL simulation model proposed by	
	S. Vornicu et al. [66]; (a) design model, (b) MF level	
	distribution, and (c) instantaneous MF flux density	82
3.17	Magnetic flux density comparison between; (a) S.	
	Vornicu et al. publication [66], and (b) an attempt to	
	recreate the proposed design model	83
3.18	Six major graph characterizations from 21 unique phase	
	configurations	84

xvii

4.1	MF level measurement in Zone 1 and 2; (a) at each	
	lateral profile point (25 - 31 October 2015), and (b)	
	coordinates representation	91
4.2	Maximum MF level recorded in Zone 1 and 2 (25 - 31	
	October 2015)	92
4.3	MF level recorded in Zone 3 (25 - 31 October 2015)	93
4.4	MF level recorded in Zone 4 (25 - 31 October 2015)	95
4.5	MF level recorded in Zone 5 (25 - 31 October 2015)	96
4.6	MF level recorded in Zone 6 (25 - 31 October 2015)	98
4.7	MF level recorded in Zone 7 (25 - 31 October 2015)	99
4.8	MF level recorded in Zone 7 (25 - 31 October 2015)	100
4.9	Max MF level measured at each lateral profile point in	
	Zone 1 and 2 (4 to 10 December 2016)	101
4.10	Max MF level recorded in Zone 1 and Zone 2 (4 – 10	
	December 2016)	102
4.11	MF level recorded in Zone 3 (4 - 10 December 2016)	104
4.12	MF level recorded in Zone 4 (4 – 10 December 2016)	105
4.13	MF level recorded in Zone 5 (4 – 10 December 2016)	106
4.14	MF level recorded in Zone 6 (4 – 10 December 2016)	108
4.15	MF level recorded in Zone 7 (4 – 10 December 2016)	109
4.16	MF level recorded in Zone 4 (4 – 10 December 2016)	110
4.17	Maximum MF level measured at each lateral profile	
	point in Zone 1 and 2 from 23rd to 29th November	
	2017	111
4.18	Max MF level recorded in Zone 1 and 2 $(23 - 29,$	
	November 2017)	112
4.19	MF level recorded in Zone 3 (23 – 29, November 2017)	114
4.20	MF level recorded in Zone 4 and 5 $(23 - 29, November$	
	2017)	115
4.21	MF level recorded in Zone 6 (23 – 29, November 2017)	117
4.22	MF level recorded in Zone 7 (23 – 29, November 2017)	118
4.23	MF level recorded in Zone 8 (23 – 29, November 2017)	119
4.24	Block 1 Ground Floor layout with wings and rooms	
	labelled	120

	4.25	Summarization of the maximum MF level recorded in	
		all three Case Studies	124
	4.26	ACSR Batang and selected ACSR conductors ampacity	
		comparison	126
	4.27	ACSR Batang and selected AAC conductors ampacity	
		comparison	128
	4.28	ACSR Batang and selected AAAC conductors	
		ampacity comparison	128
	4.29	ACSR Batang and selected 3M ACCR conductors	
		ampacity comparison	129
	4.30	ACSR Batang and selected ACSR maximum conductor	
		sag comparison	134
	4.31	ACSR Batang and selected AAC maximum conductor	
		sag comparison	135
	4.32	ACSR Batang and selected AAAC maximum	
		conductor sag comparison	136
	4.33	ACSR Batang and selected 3M ACCR maximum	
		conductor sag comparison	137
	4.34	ACSR Batang and selected ACSR MF comparison by	
		reconductoring	145
	4.35	ACSR Batang and selected AAC MF comparison by	
		reconductoring	145
	4.36	ACSR Batang and selected AAAC MF comparison by	
		reconductoring	146
	4.37	ACSR Batang and selected 3M ACCR MF comparison	
		by reconductoring	146
	4.38	CCA technique application comparison on 132 kV	
		OTL system for selected conductors	154
	4.39	CCA technique application comparison on 275 kV	
		OTL system for selected conductors	155
	7.1	ACSR Zebra and selected ACSR conductors ampacity	
		comparison	200
	7.2	ACSR Zebra and selected AAC conductors ampacity	
		comparison	200

xix

7.3	ACSR Zebra and selected AAAC conductors ampacity	
	comparison	201
7.4	ACSR Zebra and selected 3M ACCR conductors	
	ampacity comparison	201
7.5	ACSR Zebra and selected ACSR conductors sag	
	comparison	202
7.6	ACSR Zebra and selected AAC conductors sag	
	comparison	202
7.7	ACSR Zebra and selected AAAC conductors sag	
	comparison	203
7.8	ACSR Zebra and selected 3M ACSR conductors sag	
	comparison	203
7.9	ACSR Zebra and selected ACSR conductors MF level	
	comparison	204
7.10	ACSR Zebra and selected AAC conductors MF level	
	comparison	204
7.11	ACSR Zebra and selected AAAC conductors MF level	
	comparison	205
7.12	ACSR Zebra and selected 3M ACCR conductors MF	
	level comparison	205

XX

LIST OF SYMBOLS AND ABBREVIATIONS

°C	-	degree Celcius
μ	-	relative permeability
μΤ	-	micro Tesla
А	-	Ampere
B_k	-	the instantaneous value of magnetic flux
		density
С	-	catenary constant, T/w
D	-	distance
d	-	conductor diameter
Ε	-	effective modulus of elasticity
E _S	-	elastic stretch
E_T	-	conductor's extension due to any change of
		temperature
F _W		wind pressure
H _e	321	elevation of the conductor above sea level
Hz	-	Hertz
Ι	-	current
kN	-	kiloNewton
kV	-	kiloVolt
L	-	span length
l	-	length of span measured along the conductor
		(the arc length),
Lat	-	degree of latitude
LHS	-	left-hand-side
m	-	meter
MHz	-	mega Hertz
m_{ice}	-	ice mass

mm	-	millimeter
ms	-	milliseconds
MWT	-	maximum weight tension
N _d	-	day of the year
Ν	-	total number of instantaneous magnetic flux
		density profiles, 73
p	-	estimated wind pressure
q_c	-	convective heat loss rate
q_r	-	radiated heat loss rate
q_s	-	solar heat gain rate
R _{ac}	-	conductor's AC resistance
RHS	-	right-hand-side
R_{T_C}	-	50 Hz AC resistance of conductor at operating
		temperature T _C
$R_{T_{Calc}}$	-	resistance calculated at temperature T_C
R_{T_H}	-	50 Hz ac resistance at temperature T_H
R_{T_L}	-	50 Hz ac resistance at temperature T_L
S	-	siemens
S _c	-	sag of the conductor at mid-span
Т	1	horizontal component of tension
	72,	reduced maximum working tension
T_a	-	ambient temperature
T_c	-	conductor temperature at which the new 50 Hz
		resistance is desired
T_f	-	final horizontal component of tension
T_H	-	high conductor temperature at which the
		resistance, R_{T_H} is specified
T_i	-	initial horizontal component of tension
T_L	-	low conductor temperature at which the
		resistance, R_{T_L} is specified
T_r	-	conductor's rated tensile strength
и	-	wind speed
V	-	volt

xxii

W	-	either vertical force in still air, or resultant
		force with wind, per unit length of conductor
		in the span
x	-	horizontal distance from the origin or lowest
		point in the span
α	-	a defined increase of diameter due to ice
α_e	-	effective coefficient of expansion
α_{ice}	-	defined increase of diameter due to ice
α_{solar}	-	solar absorptivity
ε	-	emissivity
θ_1	-	initial temperature
θ_2	-	final temperature
$ heta_{max}$	-	maximum temperature
$ heta_{min}$	-	minimum temperature
σ_a	-	conductor cross-sectional area
σ_c	-	electrical conductivity
Ω	-	ohmic resistance
ω	-	hour angle
Φ	-	the angle between wind direction and
		conductor axis
2D	351	2-Dimensional
3D	-	3-Dimensional
AC	-	alternating current
Al	-	aluminium
CCA	-	composite cross-arms
COVID-1	19 -	coronavirus disease
CWT	-	conductor working temperature
DNA	-	deoxyribonucleic
EF	-	electric field
ELF	-	extremely low frequency
EMF	-	electromagnetic field
FOS	-	factor of safety
MCO	-	movement control order

xxiii

MF -	magnetic field
N/A -	not available
OH -	hydroxyl
OTL -	overhead transmission line
PMU -	primary intake substation
RMS -	root-mean-square
ROW -	right-of-way
RYB -	red-yellow-blue
St -	steel
AAAC -	All Aluminium Alloy Conductor
AAC -	All Aluminium Conductor
ACAR -	Aluminium Conductor Alloy Reinforced
ACCC/TW -	Aluminium Conductor Composite Core /
	Trapezoidal Wire
ACCR -	Aluminium Conductor Composite Reinforced
ACSR -	Aluminium Conductor Steel Reinforced
ACSS -	Aluminium Conductor Steel Supported
BOLD® -	Breakthrough Overhead Line Design
BSI -	British Standards International
CEGB -	Central Electricity Generating Board
CIGRE - S	International Council for Large Electric
	Systems
DOSM -	Department of Statistics Malaysia
GTACSR-	Gap-Type Thermal Resistant Aluminium
	Alloy Conductor Steel Reinforced
GUI -	graphical user interface
HTLS -	High-Temperature Low Sag
IARC -	International Agency for Research on Cancer
ICNIRP -	International Commission on Non-Ionizing
	Radiation Protection
IEEE -	Institute of Electrical and Electronics
	Engineers
KKB -	Kolej Kediaman Bestari UTHM
MEIH -	Malaysia Energy Information Hub

- ST Suruhanjaya Tenaga
- TNB Tenaga Nasional Berhad
- USA United States of America
- UTHM Universiti Tun Hussein Onn Malaysia
- ZTACIR Super Thermal Resistant Aluminium Alloy Conductor Steel Reinforced

RERPUSTAKAAN TUNKU TUN AMINAH

REFERENCES

- Malaysia Energy Information Hub. Electricity Final electricity consumption.
 Retrieved on June 18, 2020, from https://meih.st.gov.my/statistics
- [2] Department of Statistics Malaysia. Population ('000), 1891 2015, Malaysia. Retrieved on June 18, 2020, from http://www.data.gov.my/data/en_US/dataset/population-and-demographicstatistics-malaysia
- [3] Department of Statistics Malaysia. Current population estimates, Malaysia, 2018-2019. Retrieved on June 18, 2020, from https://www.dosm.gov.my/v1/index.php
- [4] Department of Statistics Malaysia. Population projection (revised), Malaysia, 2010-2040. Retrieved on June 18, 2020, from https://www.dosm.gov.my/v1/index.php
- [5] Bernama. (2018). Electricity grid in Sabah set for upgrade. Retrieved on June 28, 2020, from

https://www.thestar.com.my/metro/metro-news/2018/07/25/electricity-grid-insabah-set-for-upgrade-projects-costing-rm840mil-will-boost-supply-fromwest-coas

- [6] Astro Awani. (2014). Pencawang elektrik bakal dibina. Retrieved on June 29, 2020, from
 http://www.astroawani.com/video-malaysia/pencawang-elektrik-bakal-dibina-36697
- [7] World Health Organization. (2020). Rolling updates on coronavirus disease (COVID-19). Retrieved on June 29, 2020, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-asthey-happen
- [8] C. Chung. (2020). It is tough to cut down on power usage. Retrieved on June 29, 2020, from

https://www.thestar.com.my/news/nation/2020/04/23/it-is-tough-to-cut-downon-power-usage

- [9] Bernama. (2020). Spike in electricity bills a global concern. Retrieved on June 29, 2020, from
 https://www.thestar.com.my/business/business-news/2020/06/18/spike-in-electricity-bills-a-global-concern
- [10] R. D. Begamudre, Extra High Voltage AC Transmission Engineering. 2nd ed. New Delhi: New Age International (P) Ltd. Publishers, 2011.
- [11] International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 80: Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields. Lyon, France: IARCPress. 2002.
- [12] International Commision on Non-Ionizing Radiation Protection. ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Physics 99(6):818-836. 2010.
- [13] Institute of Electrical and Electronic Engineers. IEEE Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines. IEEE Std 644-2019 (Revision of IEEE Std 644-2008). 2019.
- [14] British Standards Institution. Electric and magnetic field levels generated by AC power systems — Measurement procedures with regard to public exposure. London, BS EN 62110:2009. 2015.
- [15] I. Said, N. A. Rahman, H. Hussain, A. Farag, and T. Juhana, "Evaluation of magnetic field from different power transmission line configurations in Malaysia," Canadian Conference on Electrical and Computer Engineering, pp. 393–396, 2004.
- [16] J. M. Bakhashwain, M. H. Shwehdi, U. M. Johar, and A. Al-Naim, "Magnetic Fields Measurements and Evaluation of EHV Transmission Lines in Saudi Arabia," Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN, Electromagnetic Fields and Our Health, 2003.
- [17] K. Ellithy, S. Al-Suwaidi and H. Elsayed, "Measuring human exposure to magnetic fields near EHV 400 kV GIS substation and power lines in state of Qatar," North American Power Symposium, pp. 1–6, 2011.
- [18] BOLD®. BOLD® PRODUCTS. Retrieved on August 2, 2020, from https://www.boldtransmission.com/products/

- [19] A. Kikuchi, and K. Yonezawa, "Application of gap conductor and other special conductors for uprating," Power Engineering Society Summer Meeting. Conference Proceedings, pp. 180–181, 2002.
- [20] M. Broschat, and R. Clayton, "Compaction Techniques Applied to Subtransmission Line Uprating 41.6 kV to 115 kV," IEEE Power Engineering Review. vol. PER-1, no. 4, pp. 65-65, 1981.
- [21] C. Zachariades, et al., "A coastal trial facility for high voltage composite cross-arms," IEEE International Symposium on Electrical Insulation, pp. 78– 82, 2012.
- [22] Institute of Electrical and Electronics Engineers. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. IEEE Std 738-2012 (Revision of IEEE Std 738-2006 -Incorporates IEEE Std 738-2012 Cor 1-2013). 2013.
- [23] CIGRE SCB2/WG 12.03. Sag-tension calculation methods for overhead lines. Technical Brochures No. 324. 2007.
- [24] British Electricity International, Modern Power Station Practice, Volume K: EHV Transmission. 3rd ed. London: Pergamon Press, 1991.
- [25] J. P. Holtzhausen, and W. L. Vosloo, High Voltage Engineering Practice and Theory, 2003.
- [26] I. R. Ibrahim, A. Farag, I. Said, H. Hussain, and N. A. Rahman, "Magnetic field reduction principles and options of primary overhead distribution lines," Asia-Pacific Conference on Applied Electromagnetics Proceedings, pp. 137–141, 2005.
- [27] B. K. Singh, R. S. Sharma, R. Ajumeera, and A. K. Mathur, "Electromagnetic fields in environment and its health hazards," International Conference on Recent Advances in Microwave Theory and Applications, pp. 558–560, 2008.
- [28] W. P. Mei. (2016). Cheras residents protest over TNB transmission pylons. Retrieved on June 29, 2020, from https://www.thestar.com.my/metro/community/2016/05/22/cheras-residentsprotest-over-tnb-transmission-pylons
- [29] N. Wertheimer, and E. D. Leeper, "Electrical wiring configurations and childhood cancer," American Journal of Epidemiology, vol. 109, no. 3, pp. 273–283, 1979.
- [30] A. Hossam-Eldin, K. Youssef, and H. Karawia, "Investigations of Induced

Currents in Human Bodies due to Exposure to EMF from Low Voltage Appliances," Eleventh International Middle East Power System Conference, pp. 523–527, 2006.

- [31] S. Greenland, A. R. Sheppard, W. T. Kaune, C. Poole, and M. A. Kelsh, "A Pooled Analysis of Magnetic Fields, Wire Codes, and Childhood Leukemia," Epidemiology, vol. 11, no. 6, pp. 624–634, 2000.
- [32] B. W. Wilson, R. G. Stevens, and L. E. Anderson, "Neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland," Life Sciences, vol. 45, no. 15, pp. 1319–1332, 1989.
- [33] P. Semm, "Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons," Comparative Biochemistry and Physiology Part A: Physiology, vol. 76, no. 4, pp. 683–689, 1983.
- [34] S. Reuss, and J. Olcese, "Magnetic field effects on the rat pineal gland: Role of retinal activation by light," Neuroscience Letters, vol. 64, no. 1, pp. 97–101, 1986.
- [35] A. Lerchl, K. O. Nonaka, and R. J. Reiter, "Pineal gland "magnetosensitivity" to static magnetic fields is a consequence of induced electric currents (eddy currents)," Journal of Pineal Research, vol. 10, no. 3, pp. 109–116, 1991.
- [36] K. Yaga, R. J. Reiter, L. C. Manchester, H. Nieves, S. Jih-Hsing, and C. Li-Dun, "Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod," *Brain Research Bulletin*, vol. 30, no. 1–2, pp. 153–156, 1993.
- [37] S. M. Yellon, "Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster," Journal of Pineal Research, vol. 16, no. 3, pp. 136–144, 1994.
- [38] A. Huss, A. Spoerri, M. Egger, and M. Röösli, "Residence near power lines and mortality from neurodegenerative diseases: Longitudinal study of the Swiss population," American Journal of Epidemiology, vol. 169, no. 2, pp. 167–175, 2009.
- [39] A. Ahlbom, et al, "A pooled analysis of magnetic fields and childhood leukaemia," British Journal of Cancer, vol. 83, no. 5, pp. 692–698, 2000.
- [40] International Commission on Non-Ionizing Radiation Protecttion. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics 74(4):494-552. 1998.
- [41] J. Swanson. (2016). Power-frequensy EMF Exposure Standards applicable in

Europe and elsewhere. Retrieved on June 20, 2020, from http://www.emfs.info/limits/world/compilation-download/

- [42] Malaysian Standard. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields - part 1: For frequency up to 3 kHz. MS 2232-1:2009. 2009.
- [43] D. Medved, L. Mišenčík, M. Kolcun, J. Zbojovský, and M. Pavlík, "Measuring of magnetic field around power lines," Proceedings of the 8th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA 2015, pp. 144–147, 2016.
- [44] A. M. Qabazard, "Survey of Electromagnetic Field Radiation Associated with Power Transmission Lines in the State of Kuwait," International Conference on Electromagnetics in Advanced Applications, pp. 795–797, 2007.
- [45] R. Tukimin, W. N. L. Mahadi, M. Y. M. Ali, and M. N. M. Thari, "Extremely Low Frequency Electromagnetic Field (ELF EMF) Survey of Residential Areas around Transmission Lines," Asia-Pacific Conference on Applied Electromagnetics, pp. 1–5, 2007.
- [46] V. S. Jimbin, and N. A. Ahmad, "Magnetic field measurement from 132/275 KV overhead power lines," Jurnal Teknologi, vol. 9, no. 1, pp. 89–95, 2017.
- [47] T. Ridley, M. Amy, L. Mark, and N. Kim, Overhead Conductor Manual. 2nd ed. Carrolton, Georgia: Southwire Company, 2007.
- [48] V. K. Mehta, and R. Mehta, Principles of Power System. New Delhi, India: S. Chand Publishing, 2005.
- [49] C. F. Dias, J. R. de Oliveira, L. D. de Mendonça, L. M. de Almeida, , E. R. de Lima, and L. Wanner, "An IoT-Based System for Monitoring the Health of Guyed Towers in Overhead Power Lines," Sensors, vol. 21, no. 18, pp. 1–23, 2021.
- [50] F. Kiessling, P. Nefzger, J. F. Nolasco, and U. Kaintzyk, Overhead Power Lines; Planning, Design, Construction. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2003.
- [51] Guinness World Records. Tallest electricity pylon. Retrieved on June 20, 2020, from https://www.guinnessworldrecords.com/world-records/tallest-electricitypylon-
- [52] Atlas Obscura. Mickey Pylon. Retrieved on August 2, 2020, from

https://www.atlasobscura.com/places/mickey-pylon

- [53] Zawani, N., Junainah, Imran, and M. Faizuhar, "Modelling of 132kV overhead transmission lines by using ATP/EMTP for shielding failure pattern recognition," Procedia Engineering, vol. 53, pp. 278–287, 2013.
- [54] B. H. K. Chia, "Impact of Malaysian EMF Standard on electrical line design and performance," International Symposium on Electromagnetic Compatibility, pp. 625–628, 2014.
- [55] Huaxing Cable. AAC conductor (All Aluminium Conductor). Retrieved on April 18, 2021, from https://www.powercableonline.com/cable/aac-conductor/
- [56] S. N. Mokhtar, M. N. Jamal, and M. Sulaiman, "Analysis of All Aluminium Conductor (AAC) and All Aluminium Alloy Conductor (AAAC)," IEEE Region 10 Conference TENCON 2004, pp. 409–412, 2004.
- [57] S. R. Krishnamurthy, and P. Selvan, "Use of AAAC in a distribution network

 a strategy for energy and cost reduction," Power Engineering Journal, vol. 9, no. 3, pp. 133–136, 1995.
- [58] S. A. Rahman, and K. Kopsidas, "Modelling of convective cooling on conductor thermal rating methods," IEEE Manchester PowerTech, pp. 1-6, 2017.
- [59] S. Nuchprayoon, and A. Chaichana, "Cost Evaluation of Current Uprating of Overhead Transmission Lines Using ACSR and HTLS Conductors," IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe, pp. 1–5, 2017.
- [60] I. Zamora, et al., "High-temperature conductors: a solution in the uprating of overhead transmission lines," IEEE Porto Power Tech Proceedings. 2001.
- [61] K. Kopsidas, and S. M. Rowland, "Evaluating opportunities for increasing power capacity of existing overhead line systems," IET Generation, Transmission & Distribution, vol. 5, no. 1, pp. 1–10, 2011.
- [62] K. Kopsidas, S. M. Rowland, M. N. R. Baharom, and I. Cotton, "Power transfer capacity improvements of existing overhead line systems," 2010 IEEE International Symposium on Electrical Insulation, pp. 1–5, 2010.
- [63] F. R. Thrash, "ACSS/TW An Improved Conductor for Upgrading Existing Lines or New Construction," IEEE Transmission and Distribution Conference, pp. 852–857, 1999.
- [64] M. S. Emran, Menara talian atas bahagian penghantaran. Institut Latiham

Sultan Ahmad (ILSAS) - PowerPointSlides. 2017.

- [65] I. Said, and H. B. Hussain, "Computation of Magnetic Field from Quadruple Tower Transmission Lines in Malaysia," 43rd International Universities Power Engineering Conference, pp. 1–5, 2008.
- [66] S. Vornicu, E. Lunca, and A. Salceanu, "ANSYS Maxwell Finite Element Model for 2D Computation of the Magnetic Field Generated by Overhead High-Voltage Power Lines," International Conference on Electromechanical and Energy Systems, pp. 1–4, 2019.
- [67] S. Han, R. Hao, and J. Lee, "Inspection of insulators on high-voltage power transmission lines," IEEE Transactions on Power Delivery, vol. 24, no. 4, pp. 2319–2327, 2009.
- [68] British Standards Institution. Insulators for overhead lines with nominal voltage above 1 kV Part 1: Ceramic or glass insulator units for a.c. systems
 Definitions, test methods and acceptance criteria. London, BS EN 60383-1. 1998.
- [69] Baharom, M. N. R. Composite cross-arms for overhead transmission lines.Ph.D. Thesis, Manchester: The University of Manchester, 2009.
- [70] S. Narain, D. Muftic, B. Jacobs, and P. Naidoo, "Uprating of 275kV Lines to 400kV as Part of a Contingency Plan for Generation Integration," IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, pp. 1–6, 2006.
- [71] J. F. Goffinet, I. Gutman, and P. Sidenvall, "Innovative insulated cross-arm: requirements, testing and construction," 12th International Conference on Live Maintenance, pp. 1–7, 2017.
- [72] A. Colombo, G. Sartorio, and A. Taschini, "Phase-to-phase air clearances in E.H.V. substations as required by switching surges," International Conference on Large High Tension Electric Systems, pp. 1–4, 1972.
- [73] R. Axelsson, and T. Johansson, "Development trends regarding improvements of porcelain insulators," Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 60–63, 1998.
- [74] Suruhanjaya Tenaga, Wayleave for Electricity Supply Lines Your rights and safety. Malaysia: Suruhanjaya Tenaga. 2015.
- [75] Institute of Electrical and Electronics Engineers. IEEE Guide for the Installation of Overhead Transmission Line Conductors. IEEE Std 524-2016

(Revision of IEEE Std 524-2003). 2017.

- [76] S. M. Mahajan, and U. M. Singareddy, "A real-time conductor sag measurement system using a differential GPS," IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 475–480, 2012.
- [77] E. Lunca, S. Ursache, and A. Salceanu, "Computation and analysis of the extremely low frequency electric and magnetic fields generated by two designs of 400 kV overhead transmission lines," Measurement, vol. 124, pp. 197–204, 2018.
- [78] S. A. Ghani, M. S. Ahmad Khiar, I. S. Chairul, M. Y. Lada, and N. H. Rahim, "Study of Magnetic Fields Produced by Transmission Line Tower Using Finite Element Method (FEM)," 2nd International Conference on Technology, Informatics, Management, Engineering & Environment, pp. 64–68, 2014.
- [79] 3MTM (2014). Aluminum Conductor Composite Reinforced (ACCR) High-capacity transmission conductor. Retrieved on June 18, 2020, from https://www.3m.com/3M/en_US/power-transmission-us/resources/accr-technical/
 [80] M.L. i. M
- [80] Malaysian Meteorological Department. Malaysian Meteorological Department (MMD) Annual Report 2016. Malaysia: Kementerian Sains, Teknologi dan Inovasi, 2016.

- H.M. Luqman, M.N.R. Baharom, Z. Zainal, Irshad Ullah, Irfan Ali, "Improvement of the sag ampacity carrying level of existing 275 kV overhead line tower by using the re-conductoring approach", Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, 2015. ISSN 1819-6608.
- ii. H.M. Luqman, M.N.R. Baharom, Irshad Ullah, Z. Zainal, "Magnetic field measurement from 132 kV and 275 kV overhead transmission lines within residential area", International Journal of Simulation: Systems, Science and Technology (IJSSST), 2016. ISSN: 1473-804x online, 1473-8031 print.
- iii. H.M. Luqman, M.N.R. Baharom, H. Ahmad, Irshad Ullah, "Planning and conducting magnetic field level measurement from overhead transmission line", International Journal of Electrical and Computer Engineering (IJECE), 2017. ISSN: 2088-8708.
- iv. H.M. Luqman, M.N.R. Baharom, N.A.M. Jamail, N.A. Othman, R.Abd. Rahman, M.F.M. Yousof, Irshad Ullah, "Conductor sag comparison for 132 kV overhead transmission line improvement in Malaysia", Bulletin of Electrical Engineering and Informatics (BEEI), 2020. ISSN: 2302-9285.

