CAPABILITY OF AgSiN AND SU-8 FILM IN PROTECTING SILVER-BASED SURFACE PLASMONS RESONANCE (SPR) TECHNIQUE FOR HONEY WATER CONTENT DETECTION

MARLIANA BINTI JAAFAR

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > FEBRUARY 2023

DEDICATION

Special for my beloved family especially my father and mother, Jaafar bin Mohd Nor and Raedah binti Md Dehan And to my supportive husband, Muhamad Asyraf bin Mohd Hamin.

Also, to my encouraging supervisor, Assoc. Prof. Dr. Maisara binti Othman

Thanks a lot for their patient, kindness, and cooperation. I wish to thank all of you for your support during my studies in UTHM. May God bless all of them.

ACKNOWLEDGEMENT

Thoughtful gratitude is specified to the Almighty ALLAH, the creator of the universe, the knower of all, for giving me the outmost strength to accomplish this research work.

First and foremost, I would like to express my sincere gratitude to my research supervisor, Assoc. Prof. Dr Maisara Binti Othman for her invaluable advice, continuous support, and patience during my Ph.D study. She guidance assisted me all the time of research and thought me the skill of looking at any problems with different perspective. I am very fortunate to have her as my dedicated supervisor and advisor in my Ph.D journey. Thanks should also go to my co-supervisors, Dr. Maslina Binti Yaacob, Assoc. Prof. Dr. Balkis Binti Haji A. Talip, and Dr. Hazura Binti Haroon for sharing their immense knowledge and plentiful experience in completing my research study. I am extremely grateful to Dr. Megat Muhammad Ikhsan Bin Megat Hasnan for his technical support, which was influential in shaping my experiment methods and results. I am indebted also to Encik Sahalan bin Yasin, who give me permission to run my experimental work in Optoelectronic Laboratory during the weekend. Not to forget, my acknowledgement and appreciation to Universiti Tun Hussein Onn Malaysia (UTHM) for providing a grant support (Vot H358), facilities, and great environment to accomplish my research study.

Last but not least, I could not end without thanking to my beloved family, especially my parents and spouse for their kind of understanding and moral support that never ending during the journey of research. Their faith in me has kept my motivation and spirit strong throughout this research process. May Allah bless each and every one of them. It is my prayer that ALLAH will restore everything you spend for my sake and that HE guides and guards you in all your endeavours.

ABSTRACT

Stingless bee honey is a natural sweetener product that has greater nutritional and medicinal values compared to the other honey bees. Due to the higher market demand and limited production levels of honey, stingless bee honey becomes a high-value commercial food product targeted for adulteration, which can cause a loss of natural therapeutic value in honey. Besides, the higher water content in stingless bee honey will promote the presence of yeast during the fermentation process, which can degrade the quality and shorten the shelf life of honey. Therefore, an optical water content detection is employed using a silver-based of prism-coupled SPR technique. Four models of SPR sensing structures are proposed in this research. The behaviour and effect of SU-8 photoresist film and the silver-silicon nitride (AgSiN) as an additional sensing layer are investigated to protect the silver film from erosion and minimize the oxygen element on the sensing surface. Based on the results, the Cr – Ag SPR structure effectively detects the adulterated honey in terms of water content percentage. The lamination of SU-8 film on the Cr - Ag layer can protect the silver surface from degradation and improve the performance of SNR, detection accuracy, and figure of merit at the range of 0.81140 to 5.13352, 1.24953 (1/°) to 1.78571 (1/°), and 0.30549 (1/%) to 0.43657 (1/%), respectively. The smallest full width at half maximum (FWHM) value is produced also at Cr - Ag - (SU-8) structure between 0.8003° to 0.5600° . In the meantime, the existence of the AgSiN layer in the Cr – Ag – AgSiN – (SU-8) sensing structure matches the resonance angle and altered the minimum reflectivity values by only 5.26% after 24 hours of testing. Moreover, the deposition of the AgSiN layer has the potential to reduce the formation of silver oxide with the lowest atomic oxygen percentage of 9.04% and the smallest bandgap size of 3.868 eV. It indicates that the AgSiN layer is practicable to increase the absorption in the sensing samples.

ABSTRAK

Madu lebah kelulut adalah produk pemanis semulajadi yang mempunyai nilai perubatan dan pemakanan lebih baik berbanding madu lebah yang lain. Oleh kerana permintaan pasaran yang tinggi dan tahap pengeluaran madu yang terhad, madu lebah kelulut telah menjadi produk makanan komersial bernilai tinggi yang disasarkan untuk pemalsuan dan boleh menyebabkan kehilangan nilai terapeutik semulajadi dalam madu. Selain itu, kandungan air yang tinggi dalam madu lebah kelulut akan menggalakkan kehadiran yis semasa proses penapaian, sekali gus merendahkan kualiti dan memendekkan jangka hayat madu. Oleh itu, pengesanan optik terhadap kandungan air di dalam madu dilaksanakan dengan gabungan prisma berasaskan perak menggunakan teknik SPR. Empat model struktur pengesanan SPR dicadangkan dalam penyelidikan ini. Ciri-ciri dan kesan filem fotoresist SU-8 dan perak-silikon nitrida (AgSiN) sebagai lapisan pengesanan tambahan diuji untuk melindungi filem perak daripada terhakis dan meminimumkan unsur oksigen. Berdasarkan hasil kajian, struktur SPR Cr – Ag berjaya mengesan madu yang dipalsukan berdasarkan peratusan kandungan air. Laminasi filem SU-8 pada lapisan Cr – Ag telah melindungi permukaan perak daripada degradasi dan meningkatkan prestasi SNR, ketepatan pengesanan, dan angka merit pada julat masing-masing 0.81140 hingga 5.13352, 1.24953 (1/°) hingga 1.78571 (1/°), dan 116.043 RIU⁻¹ hingga 165.838 RIU⁻¹. Nilai terendah full width at half maximum (FWHM) juga dihasilkan pada struktur Cr - Ag - (SU-8) antara 0.8003° hingga 0.5600°. Sementara itu, kehadiran lapisan AgSiN dalam struktur Cr - Ag - AgSiN - (SU-8) mempunyai persamaan pada sudut resonans dan mengubah nilai pemantulan minimum sebanyak 5.26% sahaja selepas 24 jam pengujian. Tambahan pula, pemendapan lapisan AgSiN berpotensi mengurangkan pembentukan oksida perak dengan peratusan atom oksigen terendah sebanyak 9.04% dan saiz jurang jalur terkecil iaitu 3.868 eV. Ini menunjukkan bahawa lapisan AgSiN boleh digunakan untuk meningkatkan penyerapan dalam sampel pengesanan.

CONTENTS

	TITL	Ε	i
	DECI	LARATION	ii
	DEDI	CATION	iii
	ACK	NOWLEDGEMENT	iv
	ABST	TRACT	v
	ABST	TRAK	vi
	CON	TENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xiii
	LIST	OF SYMBOLS AND ABBREVIATIONS	xvii
	LIST	OF APPENDICES	xxii
CHAPTER 1	INTR	ODUCTION	1
	1.1	Overview	1
	1.2	Background of Study	1
	1.3	Problem Statement	4
	1.4	Research Question	6
	1.5	Hypothesis of the Research	6
	1.6	Objectives of the Research	6
	1.7	Research Scope and Limitation	7
	1.8	Significance of the Research	7
	1.9	Organization of the Thesis	8
	1.10	Chapter Summary	9

CHAPTER 2 LITERATURE REVIEW

vii

10

2.1	Overv	iew	10
2.2	Stingle	ess Bee Honey and the Physico-chemical	
	Proper	ties	10
2.3	Adulte	eration of Honey	13
	2.3.1	Addition of Sugar	14
	2.3.2	Water Content in Honey	14
	2.3.3	Processing	15
	2.3.4	Botanical Origin	16
2.4	Metho	ds of Adulterated Honey Detection	16
	2.4.1	Melissopalynology	17
	2.4.2	Physico-chemical Analysis	17
	2.4.3	DNA Analysis	18
	2.4.4	Chromatography	18
	2.4.5	Isotope analysis	19
	2.4.6	Spectroscopy	19
	2.4.7	High-Performance Liquid Chromatography	
		(HPLC) and Micellar Electro Kinetic Capillary	
		(MEKC) Methods	19
	2.4.8	RI Measurement	20
	2.4.9	KFT Method	20
	2.4.10	Drying Method	21
	2.4.11	Other Methods	21
2.5	Introd	uction to Biosensor	21
2.6	Surfac	e Plasmon Resonance (SPR)	24
	2.6.1	Plasmons and Surface Plasmons (SPs)	26
	2.6.2	Electromagnetic Waves in Matter	27
	2.6.3	Electromagnetic Waves at Metal-Dielectric	
		Interface	29
	2.6.4	Excitation of Surface Plasmons Polaritons	
		(SPPs)	33
	2.6.5	Fresnel's Equation in Surface Plasmons	35
	2.6.6	SPR Configurations	37
	2.6.7	Modulation Scheme in SPR	40
	2.6.8	Criteria of the SPR Structure	41

viii

2.7	An Ov	verview of Employing a Multilayer Film in The	
	SPR S	ystem	42
2.8	Resear	rch Gap	47
2.9	Chapte	er Summary	52
CHAPTER 3 RESI	EARCH	METHODOLOGY	53
3.1	Overv	iew	53
3.2	Resear	rch Framework	53
3.3	Theore	etical Simulation of SPR	55
3.4	Design	ning an Optical Prism-coupled SPR Sensor	58
	3.4.1	Hardware Configuration	58
	3.4.2	Software Configuration	61
	3.4.3	Fabrication of the SPR Sensing Structure	64
3.5	Prepar	ration of the Honey Samples	70
3.6	Evalua	ation Metrics	71
3.7	Chapt	er Summary	72
CHAPTER 4 RESU	JLTS A	ND DISCUSSION	74
4.1	Overv	iew	74
4.1 4.2	Overv Simul	iew ation Work Results	74 74
4.1 4.2	Overv Simula 4.2.1	iew ation Work Results Brewster Angle Identification	74 74 75
4.1 4.2	Overv Simula 4.2.1 4.2.2	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam	74 74 75 76
4.1 4.2	Overv Simula 4.2.1 4.2.2 4.2.3	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses	74 74 75 76 78
4.1 4.2 PERPUS	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence	74 74 75 76 78 80
4.1 4.2 PERPUS	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence	74 74 75 76 78 80 81
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results	74 74 75 76 78 80 81 83
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam	74 74 75 76 78 80 81 83 84
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated	74 74 75 76 78 80 81 83 84
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection	74 74 75 76 78 80 81 83 84 85
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2 4.3.3	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection Analysis of the SU-8 Protective Layer on Silver	74 74 75 76 78 80 81 83 84 85
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2 4.3.3	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection Analysis of the SU-8 Protective Layer on Silver Sensing Surface	74 74 75 76 78 80 81 83 84 85 91
4.1 4.2 PERPUS 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2 4.3.3 4.3.4	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection Analysis of the SU-8 Protective Layer on Silver Sensing Surface Analysis of the AgSiN Layer on Silver Sensing	74 74 75 76 78 80 81 83 84 85 91
4.1 4.2 PERPU 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2 4.3.3 4.3.4	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection Analysis of the SU-8 Protective Layer on Silver Sensing Surface Analysis of the AgSiN Layer on Silver Sensing Surface	74 74 75 76 78 80 81 83 84 85 91 96
4.1 4.2 PERPU 4.3	Overv Simula 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Expert 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	iew ation Work Results Brewster Angle Identification Wavelength Dependence of the Laser Beam Metal Films Dependence of the Laser Beam Metal Films Dependence and Its Thicknesses Prism Refractive Index Dependence Refractive Index of Sensing Dependence imental Work Results Polarization Mode of the Laser Beam Silver-based SPR Structure for Adulterated Honey Detection Analysis of the SU-8 Protective Layer on Silver Sensing Surface Analysis of the AgSiN Layer on Silver Sensing Surface	74 74 75 76 78 80 81 83 84 85 91 96

ix

	4.3.6 Evaluation Results of the SPR Characteristics	105
4.4	Chapter Summary	111
CHAPTER 5 CON	CLUSION, CONTRIBUTION AND	
REC	OMMENDATION	113
5.1	Overview	113
5.2	Summary of the Research	113
5.3	Conclusion	118
5.4	Contribution of the Research	119
5.5	Recommendation for Future Work	120
	5.5.1 Optimize the Sensing Layer Properties	120
	5.5.2 Implement the Sensing Material on the Optical	
	Fiber-based SPR	120
	5.5.3 Integrate the SPR System on the Electronic	
	Chip	121
REF	CRENCES	122
APPI	INDICES	140

х

LIST OF TABLES

2.1	Type of indicators used in identifying the quality of honey.	12
2.2	Types of detection methods.	17
2.3	Types of modulation schemes in SPR sensor.	40
2.4	Parameter for the SPR structure criteria.	41
2.5	A review of the related works.	50
3.1	RF magnetron sputtering setting selection.	66
4.1	Parameter for the SPR simulation.	74
4.2	FWHM values for copper, silver, and gold films with different	
	wavelength ranges.	77 A A
4.3	Minimum reflectivity and FWHM values of copper, silver, and gold	
	films.	80
4.4	FWHM values for BK7 and SF11 prisms with different refractive	
	index sensing materials.	83
4.5	Minimum reflectivity and resonance angle of the samples using Cr -	
	Ag SPR sensing structure.	87
4.6	Refractive index and percentage of adulterant volume in pure stingless	
	bee honey.	88
4.7	Minimum reflectivity and resonance angle of the samples after 24	
	hours of testing using Cr – Ag SPR sensing structure.	89
4.8	Minimum reflectivity and resonance angle of the samples using Cr –	
	Ag – (SU-8) SPR sensing structure.	93
4.9	Minimum reflectivity and resonance angle of the samples after 24	
	hours of testing using $Cr - Ag - (SU-8)$ SPR sensing structure.	94
4.10	Minimum reflectivity and resonance angle of the samples using Cr –	
	Ag – AgSiN SPR sensing structure.	99
4.11	Minimum reflectivity and resonance angle of the samples using Cr -	
	Ag – AgSiN – (SU-8) SPR sensing structure.	103

4.12	Minimum reflectivity and resonance angle of the samples after 24	
	hours of testing using Cr - Ag - AgSiN - (SU-8) SPR sensing	
	structure.	103
4.13	Characteristic of the SPR sensing structure based on the sensitivity,	
	full width at half maximum (FWHM), signal-to-noise ratio (SNR),	
	detection accuracy (DA) and figure of merit (FOM).	106
5.1	Summary of the results in the research works.	115
5.2	Comparison of the proposed SPR structure with the previous SPR	
	works detecting adulterated honey.	117

LIST OF FIGURES

11	Global ontical sensors market by region [21]	2
1.1	Trans a freedom content detection	5
1.2	Type of water content detection.	5
2.1	Species of stingless bees in Malaysia.	11
2.2	Type of colours in honey.	12
2.3	Categories of honey adulteration.	13
2.4	Crystallization of honey.	15
2.5	Formation of bubbles during the fermentation process.	15
2.6	Schematic diagram of biosensor.	22
2.7	Schematic diagram of (a) label-free and (b) label-based biosensors.	23
2.8	Optical biosensor based on surface plasmon resonance (SPR).	24
2.9	Schematic illustration of the principle of SPR system.	25
2.10	(a) Plasma is an electron gas surrounding the positive ions in metal,	
	while (b) plasmon is a collective oscillation of a plasma.	26
2.11	Schematic diagram of the electromagnetic field for surface plasmons	
	propagating along metal and dielectric interface.	27
2.12	A basic xy-plane geometry for (a) s-polarization and (b) p-polarization	
	modes.	30
2.13	Dispersion relation of surface plasmons.	34
2.14	(a) Electric field for TE mode is perpendicular to the plane of	
	incidence and (b) magnetic field for TM mode is perpendicular to the	
	plane of incidence.	36
2.15	Prism coupling based on (a) Otto configuration and (b) Kretschmann	
	configuration.	38
2.16	Excitation of surface plasmons by the diffraction of light on a	
	diffraction grating.	39
2.17	Excitation of surface plasmons by a dielectric waveguide mode.	40
2.18	Types of materials for increasing SPR sensitivity.	42

2.19	Two-layer metal film configuration.	43
2.20	The structure of the SPR sensor based on the combination of graphene	
	and transition metal dichalcogenide layers.	44
2.21	The structure of SPR composed of bimetallic silver/gold film and	
	graphene layer.	45
2.22	Schematic diagram of graphene based SPR biosensor attached with	
	the semiconductor material.	46
2.23	Structure of SPR proposed by Maurya et. al. [145].	46
2.24	New optical sensing methods for honey adulteration measurement.	49
3.1	Flowchart of research work.	55
3.2	SPR excitation by prism coupling using Kretschmann configuration.	56
3.3	The reflectance as a function of incident angle in the SPR curve.	57
3.4	(a) The schematic diagram and (b) the photograph of the experimental	
	setup.	59
3.5	External angle and internal angle of prism.	60
3.6	Flowchart of Arduino programming.	62
3.7	Arduino and ADS1115 assembly.	63
3.8	PLX-DAQ Microsoft Excel Spreadsheet.	64
3.9	Fabrication procedure of the SPR sensor.	64
3.10	(a) Ultrasonic bath and (b) vacuum drying oven for cleaning process.	65
3.11	Deposition process using RF magnetron sputtering.	66
3.12	Schematic of the SPR structures for (a) $Cr - Ag$, (b) $Cr - Ag - (SU-$	
	8), (c) $Cr - Ag - AgSiN$ and (d) $Cr - Ag - AgSiN - (SU-8)$ layers.	67
3.13	Dektak XT® stylus surface profiler.	68
3.14	Schematic of energy band gap.	68
3.15	Field Emission Scanning Electron Microscopy (FESEM).	69
3.16	Water bath procedure to adulterate the pure honey.	70
3.17	Full width at half maximum (FWHM) illustration.	72
4.1	The existence of Brewster angle and critical angle of reflected light	
	under p-polarized mode.	75
4.2	Wavelength dependence on the SPR curves for (a) copper, (b) silver	
	and (c) gold films.	77
4.3	Dependence of the SPR curve on the thickness of (a) copper, (b) silver	
	and (c) gold metal films.	79

xiv

4.4	SPR curves of the prism refractive index dependence for air and water	
	as sensing sample.	81
4.5	Refractive index of sensing materials dependence using (a) BK7 prism	
	and (b) SF11 prism.	82
4.6	The polarization mode of the reflected light beam.	85
4.7	(a) SPR structure and (b) photograph of Cr – Ag sensing layer.	86
4.8	SPR curves for Cr – Ag sensing layer.	86
4.9	Refractive index against percentage of water content in stingless bee	
	honey.	88
4.10	EDS analysis for Cr – Ag sensing layer.	90
4.11	Surface morphology of the Cr – Ag layer from the FESEM analysis.	90
4.12	Tauc plot analysis of Cr - Ag layer from the absorbance spectrum	
	using UV-Vis spectroscopy.	91
4.13	(a) SPR structure and (b) photograph of Cr - Ag - (SU-8) sensing	
	layer.	92
4.14	SPR curves for Cr – Ag – (SU-8) sensing layer.	93
4.15	EDS analysis for Cr – Ag – (SU-8) sensing layer.	95
4.16	Surface morphology of the $Cr - Ag - (SU-8)$ layer from the FESEM	
	analysis.	96
4.17	Tauc plot analysis of Cr - Ag - (SU-8) layer from the absorbance	
	spectrum using UV-Vis spectroscopy.	96
4.18	(a) SPR structure and (b) photograph of Cr - Ag - AgSiN sensing	
	layer.	97
4.19	SPR curves for Cr – Ag – AgSiN sensing layer.	98
4.20	Degradation of AgSiN surface on the Cr – Ag – AgSiN sensing layer	98
4.21	EDS analysis for Cr – Ag – AgSiN sensing layer.	99
4.22	Surface morphology of the $Cr - Ag - AgSiN$ layer from the FESEM	
	analysis.	100
4.23	Tauc plot analysis of Cr - Ag - AgSiN layer from the absorbance	
	spectrum using UV-Vis spectroscopy.	101
4.24	(a) SPR structure and (b) photograph of $Cr - Ag - AgSiN - (SU-8)$	
	sensing layer.	101
4.25	SPR curves for $Cr - Ag - AgSiN - (SU-8)$ sensing layer.	102
4.26	EDS analysis for Cr – Ag – AgSiN – (SU-8) sensing layer.	104

xv

4.27	Surface morphology of the $Cr - Ag - AgSiN - (SU-8)$ sensing layer	
	from the FESEM analysis.	104
4.28	Tauc plot analysis of Cr - Ag - AgSiN - (SU-8) layer from the	
	absorbance spectrum using UV-Vis spectroscopy.	105
4.29	The shift of resonance angle as a function of refractive index changes	
	in pure stingless bee honey.	107
4.30	Analysis of FWHM as a function of adulterant volume in pure honey	108
4.31	Analysis of SNR as a function of adulterant volume in pure honey.	109
4.32	Analysis of detection accuracy (DA) as a function of adulterant	
	volume in pure honey.	110
4.33	Analysis of figure of merit (FOM) as a function of adulterant volume	
	in pure honey.	111

LIST OF SYMBOLS AND ABBREVIATIONS

%	-	Symbol Percentage
٨	-	Grating period
μ	-	Relative permeability
μ_0	-	Magnetic permeability of the vacuum
μm	-	micrometer
μW/%	-	Microwatt per percentage
2D	-	Two-Dimensional
3D	-	Three-Dimensional
А	-	Ampere
a.u.	-	Unitless
ADC	-	Analog-to-digital converter
ADDR	-	Address
AFM		Atomic force microscopy
Ag	TA	Silver
AgSiN	-	Silver-silicon nitride
AiPENI	-	Amplitude of incident light
AlN	-	Aluminium nitride
A_p	-	Angle of the prism
ATR	-	Attenuated total reflectance
В	-	Magnetic flux density
b	-	Symbol medium
С	-	Speed of electromagnetic wave in free space
C3	-	Dicotyledonous
C4	-	Monocotyledonous
cm	-	centimeters
Cr	-	Chromium

	٠	٠	٠	
XV	1	1	1	

d	-	Dielectric region
D	-	Electric displacement
D6	-	Digital six
DA	-	Detection accuracy
DI	-	Deionized
DLC	-	diamond-like carbon
DNA	-	Deoxyribonucleic acid
d_o	-	Diffraction order
Ε	-	Electric field
е	-	Electron charge
E_0	-	Amplitude of the electric field
EDS	-	Energy dispersive spectroscopy
eV cm ⁻¹	-	electron volt per centimeter
eV.s	-	electron volt in second
ε	-	Dielectric function of medium
ε_0	-	Permittivity of vacuum
Ев	-	Dielectric constant of metal or sensing layer
Ed	-	Dielectric constant of dielectric region
\mathcal{E}_m	-	Dielectric function of metal region
FBG	TA	Fiber Bragg grating
FESEM	-	Field-Emission Scanning Electron Microscope
FODS	-	Fiber optic displacement sensor
FOM	-	Figure of merit
FTIR	-	Fourier transform infrared
FWHM	-	Full-width at half maximum
GaN	-	Gallium nitride
GC	-	Gas chromatography
GC-MS	-	Gas chromatography coupled with mass spectrometry
Ge	-	Germanium
GND	-	Ground
Н	-	Magnetic field
h	-	Planck's constant

H_0	-	Amplitude of the magnetic field	
HFCS	-	High-fructose corn syrup	
HMF	-	Hydroxymethyl furfural	
HPAEC-PAD	-	High-performance anion-exchange chromatography	
		with Pulsed Amperometric Detection	
HPLC	-	High-Performance Liquid Chromatography	
I ² C	-	Inter-integrated circuit	
InN	-	Indium nitride	
IPA	-	Isopropyl ethanol	
j	-	Symbol medium	
J _{ext}	-	External current	
k	-	Wave number	
k	-	Wave vector	
KFT	-	Karl Fischer Titration	
LC	-	Liquid chromatography	
m	-	Metal region or metal film	
m/s	-	meter per second	
m _e		Electron mass	
МЕКС	TA	Micellar Electro Kinetic Capillary Chromatography	
mmERPUS	-	millimeters	
MoS_2	-	Molybdenum disulfide	
MoSe ₂	-	Molybdenum diselenide	
mV	-	millivolt	
mW	-	milliwatt	
Ν	-	Electron density	
Ν	-	Nitrogen	
n	-	Refractive index value	
NF	-	Noise Figure	
NGA	-	Next Generation Access	
NGWSPR	-	Nearly guided wave SPR	
nm	-	nanometer	

xix

NMR	-	Nuclear magnetic resonance
n_p	-	Refractive index of prism
n_s	-	Refractive index of sensing medium
0	-	degree
0	-	Oxygen
°C	-	Degree Celsius
р	-	Prism
PCA	-	Principle component analysis
PGA	-	Programmable gain amplifier
pН	-	Power of hydrogen
PLS	-	Partial least square
PLX-DAQ	-	Parallax Data Acquisition
POF	-	Plastic optic fiber
p-polarized	-	Parallel polarized
r (x, y, z)	-	Position vector (x-axis, y-axis, z-axis)
R	-	Reflectance
r	-	Reflection coefficient
RF	-	Radio frequency
RI	_	Refractive index
RIU	FA	Refractive Index Unit
R _{min}	-	Minimum reflectivity
r _{pms}	-	Amplitude reflection coefficient for prism-metal-
		dielectric layer
S	-	Sensing layer
S	-	Sensitivity
s/nm	-	second per nanometer
sccm	-	standard cubic centimeters per minute
SCIRA	-	Stable carbon isotope ratio analysis
SCL	-	Clock line
SDA	-	Data line
Si	-	Silicon
SiO ₂	-	Silicon dioxide
SMF	-	Single mode fiber

XX

SNR	-	Signal-to-noise ratio
s-polarized	-	Senkrecht polarized
SPPs	-	Surface plasmon polaritons
SPR	-	Surface plasmons resonance
SPs	-	Surface plasmons
SVM	-	Support vector machine
t	-	Transmission coefficient
TE	-	Transverse electric
TiO ₂	-	Titanium dioxide
ТМ	-	Transverse magnetic
UV-Vis	-	Ultraviolet-visible
V	-	Volt
W	-	Thickness of metal film
W	-	Watt
Wc	-	Water content
WS_2	-	Tungsten disulphide
WSe ₂	-	Tungsten diselenide
XRD	-	X-ray diffraction
YSI	-	Yellow Spring Instruments
δ_d	FA	Skin depth of dielectric
$\delta_m = R P U P$	-	Skin depth of metal
θ_{ex}	-	External angle
$ heta_i$	-	Incident angle
$ heta_r$	-	Reflected angle
θ_{SPR}	-	Angle of surface plasmons resonance
$ heta_t$	-	Refracted angle
λ	-	Wavelength of incident light
ρ_{ext}	-	External charge
φ	-	Phase shift
ω	-	Angular frequency
ω_p	-	Plasma frequency
ω_{sp}	-	Surface plasmons frequency
∇	-	Curl vector

xxi

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	List of Publications	140
В	List of Award	142
С	VITA	143

CHAPTER 1

INTRODUCTION

1.1 **Overview**

This chapter introduces the relevant background for stingless bee honey and the surface plasmon resonance (SPR). The basic backbone information for the research, which contains the problem statement, objectives, research questions, scope and significance of the research are introduced in this chapter. The organization of the u of the remaining chapters is summarized at the end of this chapter.

Background of Study 1.2

Honey is a natural food sweetener processed by bees from flower nectar or the secretion or excretions of plant-sucking insects on plants' living parts. Honey's physical properties and chemical compositions depend on its environmental factors, climatic condition and geographical region that contribute to its flavor, color, and smell [1]. In addition to this, the treatment of beekeepers and the type of flora and plants from which the bees consume nectar also influence honey's physical and chemical properties [1].

In Malaysia, stingless bee honey also known as Kelulut honey is believed to have higher nutritional and medicinal values than honey from other bees [2]. Stingless bee honey is a "mother of medicine" that can act as anti-inflammatory [2], antibacterial [3], [4], anti-oxidant [5] and wound healing activities [6]. The excellent antioxidant properties in stingless bee honey make it more valuable and subsequently has higher demand. On the other hand, despite the growing market demand, stingless bee honey lacks of institutional quality standards and has limited industrial production [2].

This is due to the minimal knowledge about the products owing to the limited market distribution of stingless bee honey. Moreover, the lack of comprehensive physicochemical data has caused the identification of adulteration activities to be more difficult.

Consequently, stingless bee honey is one of the high-value commercial food products targeted for adulteration. According to the food Codex Alimentarius standard [7], commercial honey is a pure product with no other ingredients and particular constituents being added or removed from it. However, many types of commercial honey have been adulterated with cheaper sweeteners (i.e., glucose syrup, cane sugar and corn syrup), water and other constituents to cater the higher demand and to compensate for the relatively high price of honey. In this situation, the adulteration of honey can undermine its natural therapeutic value.

To overcome these shortcomings, various analytical procedures have been introduced to appraise the authenticity of honey. These procedures include chromatographic methodology [8]–[10], stable carbon isotope analysis [11], [12], spectroscopic [13]–[15], and trace elements technique [12]. These conventional methods are useful and accurate in identifying the honey authenticity, but involving high knowledge to handle the devices, time-consuming and expensive instruments. Hence, several researchers have designed optical sensing devices for adulterated honey detection since it is simple, rapid, and chemical-free approach [16]–[20]. As shown in the graph in Figure 1.1, the optical sensors market is projected to grow at a stable pace over the forecast period. This growth is specifically contributed by the sector of consumer electronics, automotive and transportation, food, and beverage as well as industrial applications.

Figure 1.1: Global optical sensors market by region [21].

The optical phenomenon of surface plasmon resonance (SPR) has recently drawn huge attention among the research community due to its high-potential in optical sensing, biomedicine, and electronics. Since SPR is a non-radiative and labelfree detection method, it is well-suited for numerous applications in chemical and biological sensing, including the detection of adulterated honey [20]. Surface plasmon resonance refers to the optical excitation of surface plasmons (SPs) at the interface between a metal and a dielectric. The SPR technique is based on the electromagnetic response relying on the variation in refractive index that occurred on the sensing surface due to the adsorption of the target analyte.

REFERENCES

- P. V. Rao, K. T. Krishnan, N. Salleh, and S. H. Gan, "Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review," *Brazilian J. Pharmacogn.*, vol. 26, no. 5, pp. 657–664, 2016, doi: 10.1016/j.bjp.2016.01.012.
- M. Yaacob, N. F. Rajab, S. Shahar, and R. Sharif, "Stingless bee honey and its potential value: A systematic review," *Food Res.*, vol. 2, no. 2, pp. 124–133, 2018, doi: 10.26656/fr.2017.2(2).212.
- P. L. Miorin, N. C. Levy, A. R. Custodio, W. A. Bretz, and M. C. Marcucci, "Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus," *J. Appl. Microbiol.*, vol. 95, no. 5, pp. 913–920, 2003, doi: 10.1046/j.1365-2672.2003.02050.x.
- [4] E. K. Nishio *et al.*, "Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807," *Sci. Rep.*, vol. 6, no. February, 2016, doi: 10.1038/srep21641.
- [5] J. A. Nweze, J. I. Okafor, E. I. Nweze, and J. E. Nweze, "Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria," *BMC Res. Notes*, vol. 10, no. 556, pp. 1–6, 2017, doi: 10.1186/s13104-017-2884-2.
- [6] M. A. Abd Jalil, A. R. Kasmuri, and H. Hadi, "Stingless bee honey, the natural wound healer: A review," *Skin Pharmacol. Physiol.*, vol. 30, no. 2, pp. 66–75, 2017, doi: 10.1159/000458416.
- [7] Codex Alimentarius Commission, "Revised Codex Standard for Honey, Standards and Standard Methods," 2001 doi: 10.1007/978-3-540-88242-8.
- [8] C. Cordella, J. S. L. T. Militao, M.-C. Clement, P. Drajnudel, and D. Cabrol-Bass, "Detection and quantification of honey adulteration via direct incorporation of sugar syrups or bee-feeding: Preliminary study using high-

performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics," in *Analytica Chimica Acta*, 2004, vol. 531, pp. 239–248. doi: 10.1016/j.aca.2004.10.018.

- [9] H. Rybak-Chmielewska, "High Performance Liquid Chromatography (HPLC)
) Study of Sugar Composition in Some Kinds of Natural Honey and Winter Stores Processed By Bees From Starch Syrup," *J. Apic. Sci.*, vol. 51, no. 1, pp. 23–38, 2007.
- [10] M. M. Wheeler and G. E. Robinson, "Diet-dependent gene expression in honey bees: Honey vs. sucrose or high fructose corn syrup," 2014. doi: 10.1038/srep05726.
- [11] G. J. Padovan, D. De Jong, L. P. Rodrigues, and J. S. Marchini, "Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio," *Food Chem.*, vol. 82, no. 4, pp. 633–636, 2003, doi: 10.1016/S0308-8146(02)00504-6.
- [12] X. Zhou, M. P. Taylor, H. Salouros, and S. Prasad, "Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements," Springer US, 2018. doi: 10.1038/s41598-018-32764-w.
- [13] M. Bertelli, Davide & Lolli, Massimo & Papotti, Giulia & Bortolotti, Laura & Serra, Giorgia & Plessi, "Detection of honey adulteration by sugar syrups using 1D & 2D high-resolution nuclear magnetic resonance," *J. Agric. Food Chem.*, vol. 58, pp. 8495–8501, 2010.
- [14] E. de Oliveira Resende Ribeiro, Roberta & Marsico, Eliane & Carneiro, Carla & Lúcia Guerra Monteiro, Maria & Conte Junior, Carlos & de Jesus, "Detection of honey adulteration of high fructose corn syrup by low field nuclear magnetic resonance (LF 1H NMR)," J. Food Eng., vol. 135, pp. 39–43, 2014.
- C. Woodcock, Tony & Downey, Gerard & Daniel Kelly, J & O'Donnell,
 "Geographical classification of honey samples by Near-Infrared spectroscopy; A feasibility study," J. Agric. Food Chem., vol. 5, pp. 9128–9134, 2007.
- [16] N. Hida, N. Bidin, M. Abdullah, and M. Yasin, "Fiber optic displacement sensor for honey purity detection in distilled water," *Optoelectron. Adv. Mater. Commun.*, vol. 7, no. 7–8, pp. 565–568, 2013, doi: 10.11113/jt.v74.4711.
- [17] N. Bidin, N. H. Zainuddin, S. Islam, M. Abdullah, F. M. Marsin, and M. Yasin, "Sugar Detection in Adulterated Honey via Fiber Optic Displacement Sensor for Food Industrial Applications," *IEEE Sens. J.*, vol. 16, no. 2, pp. 299–305,

2016, doi: 10.1109/JSEN.2015.2479413.

- [18] N. Irawati, N. M. Isa, A. F. Mohamed, H. A. Rahman, S. W. Harun, and H. Ahmad, "Optical Microfiber Sensing of Adulterated Honey," *IEEE Sens. J.*, vol. 17, no. 17, pp. 5510–5514, 2017, doi: 10.1109/JSEN.2017.2725910.
- [19] R. M. Kingsta, M. Shamilee, and S. Sarumathi, "Detection of Adulteration in Honey using Optical Sensor," *Int. J. Adv. Res. Electr. Electron. Instrum. Eng.*, vol. 7, no. 3, pp. 1234–1241, 2018, doi: 10.15662/IJAREEIE.2018.0703032.
- [20] N. H. Zainuddin *et al.*, "Detection of adulterated honey by surface plasmon resonance optical sensor," *Optik (Stuttg).*, vol. 168, pp. 134–139, 2018, doi: 10.1016/j.ijleo.2018.04.048.
- [21] M. and Market, "Optical Sensing Market by Industry & Application Global Forecast 2023," 2017.
- [22] B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," *Sensors Actuators, B Chem.*, vol. 114, no. 2, pp. 1028–1034, 2006, doi: 10.1016/j.snb.2005.07.064.
- [23] S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, "Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance," *Sensors*, vol. 2, no. 2, pp. 62–70, 2002, doi: 10.3390/s20200062.
- [24] A. Verma, A. Prakash, and R. Tripathi, "Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap," *Opt. Commun.*, vol. 357, pp. 106–112, 2015, doi: 10.1016/j.optcom.2015.08.076.
- [25] I. J. Carvalho De Lima Queiroz et al., "Sensitivity enhancement of silver-based SPR sensors using ultrathin gold film and graphene overlay," in I2MTC 2020 -International Instrumentation and Measurement Technology Conference, Proceedings, 2020, pp. 1–6. doi: 10.1109/I2MTC43012.2020.9129151.
- [26] N. H. Kim, M. Choi, T. W. Kim, W. Choi, S. Y. Park, and K. M. Byun, "Sensitivity and stability enhancement of surface plasmon resonance biosensors based on a large-area Ag/MoS2 substrate," *Sensors (Switzerland)*, vol. 19, no. 1894, pp. 1–8, 2019, doi: 10.3390/s19081894.
- [27] N. A. Jamil *et al.*, "Detection of Uric Acid Using Kretschmann-based SPR Biosensor with MoS2-Graphene," in 2018 IEEE 16th Student Conference on Research and Development, SCOReD 2018, 2018, pp. 1–4. doi:

10.1109/SCORED.2018.8710842.

- [28] J. L. Elkind and K. Deng, "ROBUST INTEGRATED SURFACE PLASMON RESONANCE SENSOR," US 2002 / 0124603 A1, 2002
- [29] D. Y. Choi, S. Madden, D. Bulla, A. Rode, R. Wang, and B. Luther-Davies, "SU-8 protective layer in photo-resist patterning on As2S3 film," *Phys. Status Solidi Curr. Top. Solid State Phys.*, vol. 8, no. 11–12, pp. 3183–3186, 2011, doi: 10.1002/pssc.201000741.
- [30] B. F. E. Matarèse, P. L. C. Feyen, A. Falco, F. Benfenati, P. Lugli, and J. C. Demello, "Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes," 2018. doi: 10.1038/s41598-018-21755-6.
- [31] L. Mehryar and M. Esmaiili, "Honey & Honey Adulteration Detection: A Review," in *International Congress on Engineering and Food 11th*, 2011, pp. 1–6.
- [32] S. Soares, J. S. Amaral, M. B. P. P. Oliveira, and I. Mafra, "A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin," *Compr. Rev. Food Sci. Food Saf.*, vol. 16, no. 5, pp. 1072–1100, 2017, doi: 10.1111/1541-4337.12278.
- [33] F. Ij, M. H. Ab, I. Salwani, and M. Lavaniya, "Physicochemical Characteristics of Malaysian Stingless Bee Honey from Trigona Species," *Int. Med. J.*, vol. 16, no. 2, pp. 187–191, 2017.
- [34] V. Ngoi, "Effect of Processing Treatment on Antioxidant, Phydicochemical and Enzymatic Properties of Honey (Trigona spp)," 2016. doi: 10.17576/mjas-2016-2002-26.
- [35] S. Bogdanov, K. Ruoff, and L. Persano-Oddo, "Physico-chemical methods for the characterisation of unifloral honeys: a review," *Apidologie*, vol. 35, no. June, pp. 4–17, 2004, doi: 10.1051/apido.
- [36] W. M. Mukhtar *et al.*, "Effect of Noble Metal Thin Film Thicknesses on Surface Plasmon Resonance (SPR) Signal Amplification," *J. Adv. Res. Mater. Sci.*, vol. 49, no. 1, pp. 1–9, 2018.
- [37] Anne Helmenstine, "What Is the Most Conductive Element?," Science Notes. pp. 1–2, 2019. [Online]. Available: https://sciencenotes.org/what-is-the-mostconductive-element/
- [38] S. H. Choi and K. M. Byun, "Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection," *J. Opt. Soc. Am. A*,

vol. 27, no. 10, pp. 2229–2236, 2010, doi: 10.1364/josaa.27.002229.

- [39] Z. Yang, J. Wang, Y. Shao, Y. Jin, and M. Yi, "Studying corrosion of silver thin film by surface plasmon resonance technique," *Opt. Quantum Electron.*, vol. 52, no. 1, pp. 1–8, 2020, doi: 10.1007/s11082-019-2156-6.
- [40] N. Kelly, M. S. N. Farisya, K. T. Krishnan, and P. Marcela, "Species Diversity and External Nest Characteristics of Stingless Bees in Meliponiculture," *Pertanika J. Trop. Agric. Sci.*, vol. 37, no. 3, pp. 293–298, 2014, doi: 10.4324/9780080942742.
- [41] B. Souza *et al.*, "Composition of stingless bee honey: Setting quality standards," *Interciencia*, vol. 31, no. 12, pp. 867–875, 2006, doi: 10.1007/s00464-010-1064-4.
- [42] M. K. Choudhari, R. Haghniaz, J. M. Rajwade, and K. M. Paknikar, "Anticancer activity of Indian stingless bee propolis: An in vitro study," *Evidence-based Complement. Altern. Med.*, vol. 2013, pp. 1–10, 2013, doi: 10.1155/2013/928280.
- [43] S. Minhas, Y. S. Dhaliwal, and R. Verma, "Physico-chemical characteristics of ripened honey as affected by processing time and storage stability," *Int. J. Food Sci. Nutr.*, vol. 3, no. 3, pp. 75–80, 2018.
- [44] F. C. Biluca, F. Braghini, L. V. Gonzaga, A. C. O. Costa, and R. Fett, "Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae)," *J. Food Compos. Anal.*, vol. 50, pp. 61–69, 2016, doi: 10.1016/j.jfca.2016.05.007.
- [45] N. Ibrahim, N. F. S. Mohd Niza, M. M. Mohd Rodi, A. J. Zakaria, Z. Ismail, and K. S. Mohd, "Chemical and Biological Analyses of Malaysian Stingless Bee Propolis Extracts," *Malaysian J. Anal. Sci.*, vol. 20, no. 2, pp. 413–422, 2016, doi: 10.17576/mjas-2016-2002-26.
- [46] A. Nascimento, L. Marchini, C. Carvalho, D. Araújo, R. Olinda, and T. Silveira, "Physical-Chemical Parameters of Honey of Stingless Bee (Hymenoptera: Apidae)," *Am. Chem. Sci. J.*, vol. 7, no. 3, pp. 139–149, 2015, doi: 10.9734/ACSJ/2015/17547.
- [47] J. A. Pontis, L. A. M. A. da Costa, S. J. R. da Silva, and A. Flach, "Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil," *Food Sci. Technol.*, vol. 34, no. 1, pp. 69–73, 2014, doi: 10.1590/S0101-20612014005000015.

- [48] A. F. Omar, O. K. Mardziah Yahaya, K. C. Tan, M. H. Mail, and A. Seeni, "The influence of additional water content towards the spectroscopy and physicochemical properties of genus Apis and stingless bee honey," *Opt. Sens. Detect. IV*, vol. 9899, no. April, pp. 1–6, 2016, doi: 10.1117/12.2227060.
- [49] B. Zábrodská and L. Vorlová, "Adulteration of honey and available methods for detection – a review," *Acta Vet. Brno*, vol. 83, pp. S85–S102, 2014, doi: 10.2754/avb201483S10S85.
- [50] A. Guler, A. Bakan, C. Nisbet, and O. Yavuz, "Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup," *Food Chem.*, vol. 105, no. 3, pp. 1119–1125, 2007, doi: 10.1016/j.foodchem.2007.02.024.
- [51] N. Sahinler, S. Sahinler, and A. Gul, "Biochemical composition of honeys produced in Turkey," *J. Apic. Res.*, vol. 43, no. 2, pp. 53–56, 2004, doi: 10.1080/00218839.2004.11101110.
- [52] S. Bogdanov, "Authenticity of honey and other bee products. State of the art," *ALP science*, no. 63–64, pp. 1–8, 2007.
- [53] F. Buba, A. Gidado, and A. Shugaba, "Physicochemical and Microbiological Properties of Honey from North East Nigeria," *Biochem. Anal. Biochem.*, vol. 02, no. 04, pp. 1–7, 2013, doi: 10.4172/2161-1009.1000142.
- [54] S. Sivakesava and J. Irudayaraj, "A rapid spectroscopic technique for determining honey adulteration with corn syrup," *J. Food Sci.*, vol. 66, no. 6, pp. 787–792, 2001, doi: 10.1111/j.1365-2621.2001.tb15173.x.
- [55] J. Maria, B. De Sousa, E. Leite, D. Souza, G. Marques, and M. Magnani, "Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region," *LWT-Food Sci. Technol.*, vol. 65, pp. 645–651, 2016, doi: 10.1016/j.lwt.2015.08.058.
- [56] A. S. Ramli *et al.*, "A new dewatering technique for stingless bees honey," in *MATEC Web of Conferences*, 2017, vol. 131, pp. 1–7. doi: 10.1051/matecconf/201713103014.
- [57] S. Blidi, P. Gotsiou, S. Loupassaki, S. Grigorakis, and A. C. Calokerinos,
 "Effect of Thermal Treatment on the Quality of Honey Samples from Crete," *Adv. Food Sci. Eng.*, vol. 1, no. 1, pp. 1–8, 2017.
- [58] I. Turhan, N. Tetik, M. Karhan, F. Gurel, and H. R. Tavukcuoglu, "Quality of honeys influenced by thermal treatment," *Swiss Soc. Food Sci. Technol.*, vol.

41, pp. 1396–1399, 2008, doi: 10.1016/j.lwt.2007.09.008.

- [59] S. Laura, S. Muste, M. Tofana, and R. Suharoschi, "Changes of Hydroxymethylfurfural In Heated Honey," *Agric. Agric. Pract. Sci. J.*, vol. 3– 4, no. 87–88, pp. 101–104, 2013.
- [60] V. Pilizota and N. Nedic Tiban, "Category: Natural products Advances in Honey Adulteration Detection," *Food Safety Magazine*, pp. 60–64, 2009.
- [61] A. Puścion-Jakubik, M. H. Borawska, and K. Socha, "Modern methods for assessing the quality of Bee Honey and botanical origin identification," *Foods*, vol. 9, no. 1028, pp. 1–21, 2020, doi: 10.3390/foods9081028.
- [62] M. L. Piana, L. Persano-Oddo, A. Bentabol, E. Bruneau, S. Bogdanov, and C.
 G. Declerck, "Sensory Analysis Applied to Honey: State of the Art," in *Apidologie*, 2004, vol. 35, pp. 26–37. doi: 10.1051/apido.
- [63] G. L. Marcazzan, C. Mucignat-Caretta, C. Marina Marchese, and M. L. Piana,
 "A review of methods for honey sensory analysis," *J. Apic. Res.*, vol. 57, no. 1,
 pp. 1–14, 2017, doi: 10.1080/00218839.2017.1357940.
- [64] S. Saxena, S. Gautam, and A. Sharma, "Physical, biochemical and antioxidant properties of some Indian honeys," *Food Chem.*, vol. 118, no. 2, pp. 391–397, 2010, doi: 10.1016/j.foodchem.2009.05.001.
- [65] M. H. M. Jaafar, K. A. Hamid, N. Anuar, R. M. Zohdi, and T. J. B. Effendi, "Physicochemical properties and pharmacokinetic profiles of selected Malaysian honey," in *ISBEIA 2012 - IEEE Symposium on Business, Engineering and Industrial Applications*, 2012, pp. 140–145. doi: 10.1109/ISBEIA.2012.6422856.
- [66] F. K. G. dos Santos, A. N. D. Filho, R. H. L. Leite, E. M. M. Aroucha, A. G. Santos, and T. A. Oliveira, "Rheological and some physicochemical characteristics of selected floral honeys from plants of caatinga," *An. Acad. Bras. Cienc.*, vol. 86, no. 2, pp. 981–994, 2014, doi: 10.1590/0001-3765201420130064.
- [67] S. A. El Sohaimy, S. H. D. Masry, and M. G. Shehata, "Physicochemical characteristics of honey from different origins," *Ann. Agric. Sci.*, vol. 60, no. 2, pp. 279–287, 2015, doi: 10.1016/j.aoas.2015.10.015.
- [68] P. Guertler, A. Eicheldinger, P. Muschler, O. Goerlich, and U. Busch, "Automated DNA extraction from pollen in honey," in *Food Chemistry*, 2014, vol. 149, pp. 302–306.

- [69] P. Manivanan, S. M. Rajagopalan, and M. Subbarayalu, "Studies on authentication of true source of honey using pollen DNA barcoding," J. *Entomol. Zool. Stud.*, vol. 6, no. 3, pp. 255–261, 2018.
- [70] J. Hawkins *et al.*, "Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences," *PLoS One*, vol. 10, no. 8, pp. 1–20, 2015, doi: 10.1371/journal.pone.0134735.
- [71] M. Saravanan, G. Mohanapriya, R. Laha, R. Sathishkumar, and J. Boatwright,
 "DNA barcoding detects floral origin of Indian honey samples," *Genome*, vol. 62, no. 5, pp. 341–348, 2019, doi: 10.1139/gen-2018-0058.
- [72] A. Valentini, C. Miquel, and P. Taberlet, "DNA barcoding for honey biodiversity," *Diversity*, vol. 2, no. 4, pp. 610–617, 2010, doi: 10.3390/d2040610.
- [73] A. S. Tsagkaris *et al.*, "Honey authenticity: analytical techniques, state of the art and challenges," *RSC Adv.*, vol. 11, no. 19, pp. 11273–11294, 2021, doi: 10.1039/d1ra00069a.
 [74] L. Adamchuk *et al.* "Mathematical for a state of the st
- [74] L. Adamchuk *et al.*, "Methods for determining the botanical origin of honey," *Slovak J. Food Sci.*, vol. 14, no. June, pp. 483–493, 2020, doi: 10.5219/1386.
- J. F. Cotte, H. Casabianca, S. Chardon, J. Lheritier, and M. F. Grenier-Loustalot,
 "Chromatographic analysis of sugars applied to the characterisation of monofloral honey," *Anal. Bioanal. Chem.*, vol. 380, no. 4, pp. 698–705, 2004, doi: 10.1007/s00216-004-2764-1.
- [76] J. F. Cotte, H. Casabianca, B. Giroud, M. Albert, J. Lheritier, and M. F. Grenier-Loustalot, "Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity," *Anal. Bioanal. Chem.*, vol. 378, no. 5, pp. 1342–1350, 2004, doi: 10.1007/s00216-003-2430-z.
- [77] A. I. Ruiz-Matute, M. Weiss, D. Sammataro, J. Finely, and M. L. Sanz, "Carbohydrate composition of high-fructose corn syrups (HFCS) used for bee feeding: Effect on honey composition," *J. Agric. Food Chem.*, vol. 58, no. 12, pp. 7317–7322, 2010, doi: 10.1021/jf100758x.
- [78] I. González Martín, E. Marqués Macías, J. Sánchez Sánchez, and B. González Rivera, "Detection of honey adulteration with beet sugar using stable isotope methodology," *Food Chem.*, vol. 61, no. 3, pp. 281–286, 1998, doi: 10.1016/S0308-8146(97)00101-5.
- [79] A. Guler, H. Kocaokutgen, A. V. Garipoglu, H. Onder, D. Ekinci, and S. Biyik,

"Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C3 and C4 plants) syrups by the carbon isotope ratio analysis," *Food Chem.*, vol. 155, pp. 155–160, 2014, doi: 10.1016/j.foodchem.2014.01.033.

- [80] A. Noviyanto, W. Abdulla, W. Yu, and Z. Salcic, "Research Trends in Optical Spectrum for Honey Analysis," in *Proceeding of APSIPA Annual Summit and Conference*, 2015, pp. 416–425.
- [81] G. Rajalakshmi, A. Gopal, A. Kumar, and A. Dinesh Kumar, "Identification of moisture, glucose, sucrose, fructose region in honey sample using NIR spectroscopy," in *Proceedings of 2017 3rd IEEE International Conference on Sensing, Signal Processing and Security, ICSSS 2017*, 2017, pp. 389–391. doi: 10.1109/SSPS.2017.8071625.
- [82] S. Lekova and D. Tsankova, "Determination of botanical origin of honey by mid infrared spectroscopy (Mid-FTIR), colorimetry and chemometric analysis," *J. Chem. Technol. Metall.*, vol. 52, no. 1, pp. 52–57, 2017.
- [83] Z. Gan *et al.*, "Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey," *J. Food Eng.*, vol. 178, pp. 151–158, 2016, doi: 10.1016/j.jfoodeng.2016.01.016.
- [84] K. W. Se, S. K. Ghoshal, R. A. Wahab, R. K. R. Ibrahim, and M. N. Lani, "A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey," *Food Res. Int.*, vol. 105, no. March, pp. 453–460, 2018, doi: 10.1016/j.foodres.2017.11.012.
- [85] M. A. Rios-Corripio, M. Rojas-Lopez, and R. Delgado-Macuil, "Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods," *CYTA - J. Food*, vol. 1–4, pp. 1–10, 2012, doi: 10.1080/19476337.2011.596576.
- [86] C. Kumaravelu and A. Gopal, "Detection and Quantification of Adulteration in Honey through Near Infrared Spectroscopy," *Int. J. Food Prop.*, vol. 18, no. 9, pp. 1930–1935, 2015, doi: 10.1080/10942912.2014.919320.
- [87] J. Wang, M. M. Kliks, S. Jun, M. Jackson, and Q. X. Li, "Rapid Analysis of Glucose, Fructose, Sucrose, and Maltose in Honeys from Different Geographic Regions using Fourier Transform Infrared Spectroscopy and Multivariate Analysis," *J. Food Sci.*, vol. 75, no. 2, pp. 208–214, 2010, doi: 10.1111/j.1750-

3841.2009.01504.x.

- [88] H. J. Jeuring and F. J. Kuppers, "High performance liquid chromatography of furfural and hydroxymethylfurfural in spirits and honey.," J. Assoc. Off. Anal. Chem., vol. 63, no. 6, pp. 1215–1218, 1980, doi: 10.1093/jaoac/63.6.1215.
- [89] M. Zappalà, B. Fallico, E. Arena, and A. Verzera, "Methods for the determination of HMF in honey: A comparison," *Food Control*, vol. 16, no. 3, pp. 273–277, 2005, doi: 10.1016/j.foodcont.2004.03.006.
- [90] V. M. Rizelio, L. V. Gonzaga, G. Da Silva Campelo Borges, G. A. Micke, R. Fett, and A. C. O. Costa, "Development of a fast MECK method for determination of 5-HMF in honey samples," *Food Chem.*, vol. 133, no. 4, pp. 1640–1645, 2012, doi: 10.1016/j.foodchem.2011.11.058.
- [91] A. Gallina, N. Stocco, and F. Mutinelli, "Karl Fischer Titration to Determine Moisture in Honey; A New Simplified Approach," *Food Control*, vol. 21, pp. 942–944, 2010.
- [92] H. D. Isengard, D. Schultheiß, B. Radović, and E. Anklam, "Alternatives to official analytical methods used for the water determination in honey," *Food Control*, vol. 12, no. 7, pp. 459–466, 2001, doi: 10.1016/S0956-7135(01)00044-5.
- [93] M. Yang, Y. Gao, Y. Liu, X. Fan, and K. Zhao, "Broadband Dielectric Properties of Honey : Effect of Water Content," *J. Agric. Sci. Technol.*, vol. 20, pp. 685–693, 2018.
- [94] W. Guo, X. Zhu, Y. Liu, and H. Zhuang, "Sugar and water contents of honey with dielectric property sensing," *J. Food Eng.*, vol. 97, no. 2, pp. 275–281, 2010, doi: 10.1016/j.jfoodeng.2009.10.024.
- [95] W. R. Heineman and W. B. Jensen, "Leland C. Clark Jr. (1918–2005)," *Biosens. Bioelectron.*, vol. 21, no. 8, pp. 1403–1404, 2006, doi: 10.1016/j.bios.2005.12.005.
- [96] D. J. Pasto, zO G. Richard Meyer, and S.-Z. Kang, "A urea-specific enzyme electrode," J. Am. Chem. Soc., vol. 91, no. 8, pp. 2164–2165, 1969.
- [97] N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, "Introduction to biosensors," *Essays Biochem.*, vol. 60, no. 1, pp. 1–8, 2016, doi: 10.1042/EBC20150001.
- [98] A. P. F. Turner, I. Karube, and G. S. Wilson, *Biosensors: Fundamentals and applications*. 1987. doi: 10.1515/9783110641080.
- [99] P. Damborský, J. Švitel, and J. Katrlík, "Optical biosensors," *Essays Biochem.*,

vol. 60, no. 1, pp. 91-100, 2016, doi: 10.1042/EBC20150010.

- [100] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," *Proc. Phys. Soc. London*, vol. 18, no. 1, pp. 269– 275, 1902, doi: 10.1088/1478-7814/18/1/325.
- [101] Lord Rayleigh, "On the dynamical theory of gratings," Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, vol. 79, no. 532, pp. 399–416, 1907, doi: 10.1098/rspa.1907.0051.
- [102] U. Fano, "The theory of anomalous diffraction grating and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," vol. 31, no. 1935. pp. 213–222, 1941. [Online]. Available: papers2://publication/uuid/2F499881-875C-4327-98A3-91CFF06A4A12
- [103] A. Otto, "Excitation of Nonradiative Surface Plama Waves in Silver by the Method of Frustrated Total Reflection," *Zeitschrift fur Phys.*, vol. 216, pp. 398– 410, 1968, doi: 10.1080/13523279208415155.
- [104] E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," *Zeitschrift fur Naturforsch. - Sect. A J. Phys. Sci.*, vol. 23, no. 12, pp. 2135–2136, 1968, doi: 10.1515/zna-1968-1247.
- [105] S. P. Oscillations, a T. Silver, S. With, and A. Coatings, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings," *Surf. Sci.*, vol. 72, pp. 577–588, 1978.
- [106] J. D. Swalen, J. G. Gordon, M. R. Philpott, A. Brillante, I. Pockrand, and R. Santo, "Plasmon surface polariton dispersion by direct optical observation," *Am. J. Phys.*, vol. 48, no. 8, pp. 669–672, 1980, doi: 10.1119/1.12334.
- [107] B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," *Sensors and Actuators*, vol. 4, pp. 299–304, 1983, doi: 10.1016/0250-6874(83)85036-7.
- [108] C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," *Sensors and Actuators*, vol. 3, pp. 79–88, 1982, doi: 10.1016/0250-6874(82)80008-5.
- [109] B. A. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons Inc, 2007, 2007.
- [110] A. K. Sharma, R. Jha, and B. D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review," *IEEE Sens. J.*, vol. 7, no. 8, pp. 1118–1129, 2007, doi: 10.3323/jcorr1974.30.5_265.

- [111] E. K. Akowuah, T. Gorman, and S. Haxha, "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration," *Opt. Express*, vol. 17, no. 26, pp. 23511–23521, 2009, doi: 10.1364/oe.17.023511.
- [112] F. C. Chien and S. J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," *Biosens. Bioelectron.*, vol. 20, no. 3, pp. 633–642, 2004, doi: 10.1016/j.bios.2004.03.014.
- [113] J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," *Sensors Actuators, B Chem.*, vol. 41, no. 1–3, pp. 207– 211, 1997, doi: 10.1016/S0925-4005(97)80297-3.
- [114] M. Piliarik and J. Homola, "Surface plasmon resonance (SPR) sensors: approaching their limits?," *Opt. Express*, vol. 17, no. 19, pp. 16505–16517, 2009, doi: 10.1364/oe.17.016505.
- [115] R. L. J. Earp, "Multiwavelength Surface Plasmon Resonance Sensor Designs for Chemical and Biochemical Detection," 1998. [Online]. Available: http://theses.lib.vt.edu/theses/available/etd-52598-91644/
- [116] D.-W. Huang, "Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle," *Opt. Eng.*, vol. 49, no. 5, pp. 1–6, 2010, doi: 10.1117/1.3431662.
- [117] D. T. Nurrohman and N.-F. Chiu, "Surface Plasmon Resonance Biosensor Performance Analysis on 2D Material Based on Graphene and Transition Metal Dichalcogenides," *ECS J. Solid State Sci. Technol.*, vol. 9, no. 115023, pp. 1– 6, 2020, doi: 10.1149/2162-8777/abb419.
- [118] G. Mohanty, B. K. Sahoo, and J. Akhtar, "Performance of graphene-on-gold SPR biosensor using wurtzite nitrides," in 2016 International Symposium on Electronics and Smart Devices, ISESD 2016, 2016, pp. 219–224. doi: 10.1109/ISESD.2016.7886722.
- [119] O. Tabasi and C. Falamaki, "Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors," *Anal. Methods*, vol. 10, no. 32, pp. 3906–3925, 2018, doi: 10.1039/c8ay00948a.
- [120] R. Malureanu and A. Lavrinenko, "Ultra-thin films for plasmonics: A technology overview," *Nanotechnol. Rev.*, vol. 4, no. 3, pp. 259–275, 2015, doi: 10.1515/ntrev-2015-0021.
- [121] Y. Chen et al., "Bimetallic chips for a surface plasmon resonance instrument,"

Appl. Opt., vol. 50, no. 3, pp. 387–391, 2011, doi: 10.1364/AO.50.000387.

- [122] X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, "Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers," *J. Opt. A Pure Appl. Opt.*, vol. 8, no. 11, pp. 959–963, 2006, doi: 10.1088/1464-4258/8/11/005.
- [123] S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," in *Proceedings of the IEEE Hong Kong Electron Devices Meeting*, 2002, pp. 63– 68. doi: 10.1109/HKEDM.2002.1029158.
- [124] S. Chen and C. Lin, "High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization," *Optik (Stuttg).*, vol. 127, no. 19, pp. 7514–7519, 2016, doi: 10.1016/j.ijleo.2016.05.085.
- [125] M. F. Sultan, A. A. Al-Zuky, and S. A. Kadhim, "Performance parameters evaluation of surface plasmon resonance based fiber optic sensor with different bilayer metals: Theoretical study.," *Al-Mustansiriyah J. Sci.*, vol. 29, no. 1, pp. 195–203, 2018, doi: 10.23851/mjs.v29i1.248.
- [126] A. K. Sharma and G. J. Mohr, "Plasmonic optical sensor for determination of refractive index of human skin tissues," *Sensors Actuators, B Chem.*, vol. 226, pp. 312–317, 2016, doi: 10.1016/j.snb.2015.11.119.
- [127] S. Singh *et al.*, "2D nanomaterial-based surface plasmon resonance sensors for biosensing applications," *Micromachines*, vol. 11, no. 779, pp. 1–28, 2020, doi: 10.3390/mi11080779.
- [128] Z. Lin *et al.*, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with Graphene Covered Au-MoS2-Au Films," *IEEE Photonics J.*, vol. 8, no. 6, pp. 1–8, 2016, doi: 10.1109/JPHOT.2016.2631407.
- [129] V. G. Kravets *et al.*, "Graphene-protected copper and silver plasmonics," 2014. doi: 10.1038/srep05517.
- [130] N. A. Jamil, P. S. Menon, S. Shaari, M. A. Mohamed, and B. Y. Majlis, "Taguchi optimization of surface plasmon Resonance-Kretschmann biosensor using FDTD," in 2018 IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 65–68.
- [131] K. Bhavsar and R. Prabhu, "Investigations on sensitivity enhancement of SPR biosensor using tunable wavelength and graphene layers," in *IOP Conference Series: Materials Science and Engineering*, 2019, vol. 499, pp. 1–6. doi:

10.1088/1757-899X/499/1/012008.

- [132] M. B. Hossain, I. M. Mehedi, M. Moznuzzaman, L. F. Abdulrazak, and M. A. Hossain, "High performance refractive index SPR sensor modeling employing graphene tri sheets," *Results Phys.*, vol. 15, no. 102719, pp. 1–9, 2019, doi: 10.1016/j.rinp.2019.102719.
- [133] N. A. Jamil, P. S. Menon, F. A. Said, K. A. Tarumaraja, G. S. Mei, and B. Y. Majlis, "Graphene-based surface plasmon resonance urea biosensor using Kretschmann configuration," in *Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2017*, 2017, pp. 112–115. doi: 10.1109/RSM.2017.8069122.
- [134] N. Mudgal, A. Saharia, A. Agarwal, J. Ali, P. Yupapin, and G. Singh, "Modeling of highly sensitive surface plasmon resonance (SPR) sensor for urine glucose detection," *Opt. Quantum Electron.*, vol. 52, no. 6, pp. 1–14, 2020, doi: 10.1007/s11082-020-02427-0.
- [135] A. Keshavarz, S. Zangenehzadeh, and A. Hatef, "Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood," *Appl. Nanosci.*, vol. 10, no. 5, pp. 1465–1474, 2020, doi: 10.1007/s13204-020-01252-x.
- [136] J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: Physics and applications," J. Phys. D. Appl. Phys., vol. 45, no. 11, pp. 1–21, 2012, doi: 10.1088/0022-3727/45/11/113001.
- [137] G. Mohanty, B. K. Sahoo, and J. Akhtar, "Sensitivity parameter analysis of graphene based bimetallic surface plasmon resonance biosensor," *J. Nano Res.*, vol. 34, no. July, pp. 17–21, 2015, doi: 10.4028/www.scientific.net/JNanoR.34.17.
- [138] Q. Wang, S. Cao, X. Gao, X. Chen, and D. Zhang, "Improving the detection accuracy of an Ag/Au bimetallic surface plasmon resonance biosensor based on graphene," *Chemosensors*, vol. 10, no. 10, pp. 1–13, 2022, doi: 10.3390/chemosensors10010010.
- [139] M. Wang *et al.*, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film," *RSC Adv.*, vol. 7, no. 75, pp. 47177– 47182, 2017, doi: 10.1039/c7ra08380g.
- [140] G. Mohanty, J. Akhtar, and B. K. Sahoo, "Effect of Semiconductor on

Sensitivity of a Graphene-Based Surface Plasmon Resonance Biosensor," *Plasmonics*, vol. 11, no. 1, pp. 189–196, 2016, doi: 10.1007/s11468-015-0033-0.

- [141] G. Mohanty and B. K. Sahoo, III–V Nitrides and Graphene SPR Biosensor for Hemoglobin Detection, vol. 249. Springer Singapore, 2020. doi: 10.1007/978-981-15-6467-3_5.
- [142] G. Mohanty and B. K. Sahoo, "III-V nitrides and performance of graphene on copper plasmonic biosensor," *Superlattices Microstruct.*, vol. 93, pp. 226–233, 2016, doi: 10.1016/j.spmi.2016.03.040.
- [143] J. Wu, "When group-III nitrides go infrared: New properties and perspectives," J. Appl. Phys., vol. 106, no. 011101, pp. 1–29, 2009, doi: 10.1063/1.3155798.
- [144] J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, "Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer," *Appl. Phys. A Mater. Sci. Process.*, vol. 121, no. 2, pp. 525–533, 2015, doi: 10.1007/s00339-015-9442-3.
- [145] A. Lahav, "Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer," J. Nanophotonics, vol. 3, no. 031501, pp. 1–15, 2009, doi: 10.1117/1.3079803.
- [146] A. Lahav, M. Auslender, and I. Abdulhalim, "Sensitivity enhancement of guided-wave surface-plasmon resonance sensors," *Opt. Lett.*, vol. 33, no. 21, p. 2539, 2008, doi: 10.1364/ol.33.002539.
- [147] C. Lin and S. Chen, "Theoretical investigation of detection accuracy of surface plasmon resonance sensor with dielectric layer," *J. Nanophotonics*, vol. 11, no. 04, pp. 1–9, 2017, doi: 10.1117/1.jnp.11.046014.
- [148] S. Jalili, F. Hajakbari, and A. Hojabri, "Effect of silver thickness on structural, optical and morphological properties of nanocrystalline Ag/NiO thin films," J. *Theor. Appl. Phys.*, vol. 12, no. 1, pp. 15–22, 2018, doi: 10.1007/s40094-018-0275-2.
- [149] S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, "Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material," *Int. J. Nanoelectron. Mater.*, vol. 10, no. 2, pp. 147–156, 2017.
- [150] C. M. Chow and J. A. Bain, "Effect of Thin Cr and Cu Adhesion Layers on Surface Plasmon Resonance at Au/SiO2 Interfaces," *IEEE Trans. Magn.*, vol. 52, no. 7, pp. 7–10, 2016, doi: 10.1109/TMAG.2015.2509252.

- [151] A. Abbas, M. J. Linman, and Q. Cheng, "Sensitivity Comparison of Surface Plasmon Resonance and Plasmon-Waveguide Resonance Biosensors," *Sens Actuators B Chem*, vol. 156, no. 1, pp. 169–175, 2011, doi: 10.1016/j.snb.2011.04.008.Sensitivity.
- [152] E. Galopin *et al.*, "Sensitivity of plasmonic nanostructures coated with thin oxide films for refractive index sensing: Experimental and theoretical investigations," *J. Phys. Chem. C*, vol. 114, no. 27, pp. 11769–11775, 2010, doi: 10.1021/jp1023839.
- [153] S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, "A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices," *Sensors Actuators, B Chem.*, vol. 222, pp. 1–25, 2015, doi: 10.1016/j.snb.2015.06.123.
- [154] M. Bayle et al., "Ag doped silicon nitride nanocomposites for embedded plasmonics," Appl. Phys. Lett., vol. 107, no. 101907, pp. 1–7, 2015, doi: 10.1063/1.4930940.
- [155] U. Z. Zaidi, R. Mahmoodian, A. R. Bushroa, and K. M. Vellasamy, "Surface modification of Ti64-Alloy with silver silicon nitride thin films," *J. Adhes. Sci. Technol.*, vol. 33, no. 22, pp. 1–18, 2019, doi: 10.1080/01694243.2019.1646462.
- [156] J. Zhao *et al.*, "Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber," *Sensors Actuators, B Chem.*, vol. 230, pp. 1–12, 2016, doi: 10.1016/j.snb.2016.02.020.
- [157] N. Hida, M. Abdullah, and M. Yasin, "Fiber optic displacement sensor for honey purity detection using glucose adulterant," J. Teknol., vol. 74, no. 8, pp. 1–4, 2015.
- [158] Vikas, M. K. Yadav, P. Kumar, and R. K. Verma, "Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes," *Food Chem.*, vol. 332, pp. 1–27, 2020, doi: 10.1016/j.foodchem.2020.127346.
- [159] W. M. Mokhtar, N. H. M. K. Pang, and R. M. Halim, "Gold Nanoparticles Coated FBG Sensor Based on Localized SPR for Adulterated Honey Classification," *Nano Hybrids Compos.*, vol. 31, pp. 45–54, 2021, doi: 10.4028/www.scientific.net/nhc.31.45.
- [160] C. R. M. Anthony and D. N. Balasuriya, "Electronic Honey Quality Analyser," Eng. J. Inst. Eng. Sri Lanka, vol. 49, no. 3, p. 41, 2016, doi:

10.4038/engineer.v49i3.7075.

- [161] S. Franssila, *Introduction to Microfabrication*, 2nd ed. John Wiley & Sons, Ltd., 2010.
- [162] O. Pluchery, R. Vayron, and K. M. Van, "Laboratory experiments for exploring the surface plasmon resonance," *Eur. J. Phys.*, vol. 32, no. 2011, pp. 585–599, 2011, doi: 10.1088/0143-0807/32/2/028.
- [163] G. Behera, "Structural, Magnetic and Dielectric Investigation of Iron Tellurate Fe2TeO6," 2016. doi: 10.13140/RG.2.1.4168.9207.
- [164] J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," *Sensors Actuators, B Chem.*, vol. 54, no. 1, pp. 16–24, 1999, doi: 10.1016/S0925-4005(98)00322-0.
- [165] N. F. Murat, W. M. Mukhtar, A. R. A. Rashid, K. A. Dasuki, and A. A. R. A. Yussuf, "Optimization of gold thin films thicknesses in enhancing SPR response," in *IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE*, 2016, no. 2, pp. 244–247. doi: 10.1109/SMELEC.2016.7573637.
- [166] R. Zakaria *et al.*, "Sensitivity comparison of refractive index transducer optical fiber based on surface plasmon resonance using Ag, Cu, and bimetallic Ag-Cu layer," *Micromachines*, vol. 11, no. 77, pp. 1–13, 2020, doi: 10.3390/mi11010077.
- [167] R. Verma, S. K. Srivastava, and B. D. Gupta, "Surface-plasmon-resonancebased fiber-optic sensor for the detection of low-density lipoprotein," *IEEE Sens. J.*, vol. 12, no. 12, pp. 3460–3466, 2012, doi: 10.1109/JSEN.2012.2210402.
- [168] C. Lin and S. Chen, "Theoretical investigation of detection accuracy of surface plasmon resonance sensor with dielectric layer," *J. Nanophotonics*, vol. 11, no. 04, pp. 1–7, 2017, doi: 10.1117/1.jnp.11.046014.
- [169] X. Wang, X. Wu, J. Zhu, Z. Pang, H. Yang, and Y. Qi, "Theoretical investigation of a highly sensitive refractive-index sensor based on TM 0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure," *Sensors (Switzerland)*, vol. 19, no. 1187, pp. 1–10, 2019, doi: 10.3390/s19051187.
- [170] P. B. Johnson and R. W. Christy, "Optical Constant of the Nobel Metals," Phys.

Rev. B, vol. 6, no. 12, pp. 4370–4379, 1972.

- [171] P. J. Jobst *et al.*, "Optical properties of unprotected and protected sputtered silver films: Surface morphology vs. UV/VIS reflectance," *Adv. Opt. Technol.*, vol. 3, no. 1, pp. 91–102, 2014, doi: 10.1515/aot-2013-0052.
- [172] KayakuAM, "SU-8 3000 Permanent Negative Epoxy Photoresist," 2020.
- [173] U. Gangopadhyay, S. Jana, S. Das, P. Ghosh, and A. Mondal, "Anti-reflective nanocomposite based coating for crystalline silicon solar cells with noticeable significance," *J. Renew. Sustain. Energy*, vol. 5, no. 3, pp. 1–6, 2013, doi: 10.1063/1.4808154.

APPENDIX A

LIST OF PUBLICATIONS

Journals:

- M. B. Jaafar, M. B. Othman, M. Yaacob, B. A. Talip, M. A. Ilyas, N. H. Ngajikin, N. A. M. Fauzi, "A Review on Honey Adulteration and the Available Detection Approaches", *International Journal of Integrated Engineering*, 12(2), 125-131. 2020. (published)
- M. B. Jaafar, M. B. Othman, M.M.I. Megat Hasnan, M. Yaacob, H. Haroon,
 B. A. Talip, "Capability of AgSiN/SU-8 Layer on Silver-based SPR for Adulterated Honey Detection", *Advanced in Nano Research. (review)* Proceedings:
- M. B. Jaafar, M. B. Othman, M. Yaacob, H. Haroon, M. A. Ilyas, A. A. Ayub, "Excitation of Surface Plasmons in Thin Noble Metallic Film of Copper, Silver, and Gold Layer", 2020 IEEE Student Conference on Research and Development (SCORED). 27-29 September 2020. Batu Pahat, Johor. (published)
- M. B. Jaafar, M. B. Othman, H. Haroon, M. Yaacob, M. A. Ilyas, S. N. A. Zainurin, N. S. Ahmad, "A Simulation of Prism-based Surface Plasmon Resonance Liquid Sensing Device", 2020 IEEE 8th International Conference on Photonics (ICP). 12 May-30 June 2020. Kota Bharu, Kelantan. (published)

- M. B. Jaafar, M. M. I. Megat Hasnan, M. B. Othman, N. Nayan, Z. Azman, M. Yaacob, R. Mohd Zin, "Investigation of SU-8 as Protection Layer For Prism SPR Sensor Towards Reusable Honey Adulteration Detection", 2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO). 22-24 September 2021. Port Dickson, Negeri Sembilan. (Published)
- (iv) N. S. Ahmad, M. Yaacob, M. B. Othman, N. H. Ngajikin, M. B. Jaafar, M. A. Ilyas, "Simulation of Polymer Multimode Interference Thermo-Optic Switch", 2020 IEEE 8th International Conference on Photonics (ICP). 12 May-30 June 2020. Kota Bharu, Kelantan. (published)

APPENDIX B

LIST OF AWARD

(i) Silver Medal in International Research & Innovation Symposium & Exposition (RISE) Festival UTHM (24th September 2019):
M. B. Jaafar, M. B. Othman, M. A. Jabar, M. A. Ilyas, S. N. A. Zainurin.
"Monitoring System for Kelulut Honey Quality Using Blynk Application."

APPENDIX C

VITA

The author was born on April 2, 1991, in Kuala Lumpur, Malaysia. She went to Rawang Integrated Boarding School, Rawang, Selangor, Malaysia for her secondary school. Then, she continue her studied at Kedah technical Matriculation College, Pendang, Kedah, Malaysia, before she pursued her degree at the University of Tun Hussein Onn Malaysia, Batu Pahat, Johor. She graduated with the B.Eng. (Hons) in Electronic Engineering in 2014. Upon graduation, she continues her study in master by research for electronic engineering at University of Tun Hussein Onn Malaysia, Batu Pahar, Johor and graduated in 2017. Her research interest during the master studied is in the scope of photonic communication engineering. Thereafter, she further her Ph.D. program at the same university in the background of optical sensing engineering.

