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ABSTRACT 

Recently, the cognitive neuroscience research community has been interested in 

measuring mental workload based on electroencephalogram (EEG) signals. In 

multichannel EEG studies, it is reported that the signal from the brain's frontal area is 

associated with mental workload. Hence, using a single or a few EEG channels could 

be feasible. However, the challenge is to remove the presence of artefact in the EEG 

signal since not all existing methods in multichannel EEG work well when using a 

single or a small number of channels due to the limited signal sources. To overcome 

the limitation, this thesis proposed using the ensemble empirical mode decomposition 

(EEMD) technique. The EEMD heuristically decomposed the EEG signal in the time 

domain into a series of intrinsic mode functions (IMF). Here, a new technique is 

proposed for selecting the significant IMFs based on the peak frequency of power 

spectral density. To evaluate the performance of the proposed method, a mental 

arithmetic task and a building structure task are designed to stimulate the mental 

workload of cognitive and psychomotor activities. A cross-task and a cross-subject 

classification based on the designed mental workload task have been done. Relative 

power, Shannon entropy, log energy entropy, skewness and kurtosis were extracted as 

features. Results show that the EEMD coupled with ANN provides the best overall 

performance compared to the other classifiers. In cross-task classification, the 

classification accuracy achieved 90.0% when using the log energy entropy feature. 

While in cross-subject classification, the accuracy achieved 76.7% and 86.7% for 

mental arithmetic and building structure tasks, respectively when the Shannon entropy 

feature was used. In a comparative study, the EEMDANN and log energy entropy 

features provide better accuracy in cross-task and cross-subject classification than the 

previous studies. In conclusion, this work has contributed to the EEG-based mental 

workload evaluation using a small number of EEG channels.   
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ABSTRAK 

Kebelakangan ini, komuniti penyelidikan dalam bidang neurosains kognitif berminat 

dalam mengukur beban kerja intelektual berdasarkan isyarat EEG. Dalam kajian EEG 

berbilang saluran, dilaporkan bahawa isyarat di kawasan hadapan otak dikaitkan 

dengan beban kerja intelektual. Oleh itu, saluran tunggal atau berbilang saluran EEG 

boleh digunakan. Namun, cabaran untuk menghapuskan kehadiran artifak dalam 

isyarat EEG adalah sukar kerana tidak semua kaedah sedia ada berfungsi apabila 

kaedah saluran tunggal digunakan. Bagi mengatasi batasan tersebut, tesis ini 

mencadangkan penggunaan teknik penguraian mod empirikal (EEMD). EEMD secara 

heuristik menguraikan isyarat EEG dalam domain masa kepada satu siri fungsi mod 

intrinsik (IMF). Di sini, teknik baharu dalam memilih IMF penting berdasarkan 

kekerapan puncak ketumpatan spektrum kuasa telah dicadangkan. Untuk menilai 

prestasi kaedah yang dicadangkan, tugasan congakan aritmetik dan membina struktur 

telah direka untuk mendorong beban kerja mental aktiviti kognitif dan psikomotor. 

Klasifikasi silang tugas dan silang subjek berdasarkan bebanan tugas kerja yang direka 

bentuk telah dilakukan. Kuasa relatif, entropi Shannon, entropi tenaga log, pencongan 

dan kurtosis diekstrak sebagai ciri bebanan intelektual. Keputusan menunjukkan 

bahawa EEMD diganding dengan ANN memberikan prestasi keseluruhan yang terbaik 

berbanding pengelas yang lain. Ketepatan klasifikasi mencapai 90.0% bagi klasifikasi 

silang tugas apabila entropi tenaga log digunakan. Dalam pengelasan silang subjek 

pula, ketepatan masing-masing mencapai 76.7% dan 86.7% untuk tugasan congakan 

aritmetik dan membina struktur apabila entropi Shannon digunakan. Dalam kajian 

perbandingan, kaedah EEMDANN dan entropi tenaga log memberikan ketepatan yang 

lebih baik dalam klasifikasi silang tugas dan silang subjek berbanding kajian terdahulu. 

Kesimpulannya, kerja ini telah menyumbang kepada pengukuran beban kerja 

intelektual berasaskan EEG menggunakan sebilangan kecil saluran EEG. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

 

 

Bloom’s taxonomy is a framework or tool for learning objectives, outcomes and 

assessments. Cognitive and psychomotor domains are two major domains in the 

taxonomy for ability indicators besides the affective domain. According to Bloom 

(1956), cognitive ability is defined as thinking level, knowledge and intellectual skills, 

while psychomotor ability reflects motor coordination and physical skills. Both 

abilities are interrelated and are the product of maturation and learning. Hence, they 

reflect an individual strategy for handling a task. Therefore, different individuals may 

have different mental workloads when performing a same task.  

The definition of mental workload is the amount of mental effort a person 

makes while performing a specific task within a limited time, depending on the 

person’s prior knowledge and physiological state (Cain, 2007, Moray, 2013). Then, 

the workload is the brain’s cognitive processes involved during the task, such as 

problem-solving, working memory and arithmetic (iMotion, 2015). Traditionally, a 

mental workload study is typically done by a psychologist through a self-written report 

or verbal evaluation. Some common evaluation measures that have been used are 

performance measure, subjective measure and behavioural measure (Witon, 2019). 

However, such evaluation methods lack real-time mental workload measurement 

during task execution (So et al., 2017, Miyake, 2001). 

Recently, the research community in cognitive neuroscience and biomedical 

engineering has an ongoing interest in monitoring the mental state directly from the 

human brain by measuring the mental workload at the physiological level (Chin et al., 

2018, Plechawska-Wójcik et al., 2019, Adewale and Panoutsos, 2019, Charles and 
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Nixon, 2019, Tao et al., 2019). Figure 1.1 shows the number of articles published 

related to mental workload based on physiological measures from the year 2010 until 

May 2022 as extracted from the Scopus database. This trend is predicted to continue 

in the future as the World Health Organization (WHO) targeted a doubling in the 

output of global research on mental health by 2030 (WHO, 2021). 

 

 

Figure 1.1: Articles published in the mental workload topic based on physiological 

measures from the year 2010 until May 2022 (retrieved on 21st May 2022) 

 

In the physiological measure approach, most of them used 

electroencephalogram (EEG) signals (Chen et al., 2017a, Mehla et al., 2020, 

Hernández-Sabaté et al., 2022), functional magnetic resonance imaging (fMRI) 

(Causse et al., 2021), magnetoencephalography (MEG) (Ishii et al., 2018), functional 

near-infrared spectroscopy (fNIRS) (Geissler et al., 2021) and electrocorticography 

(ECoG) (Calderon et al., 2018). Amongst these techniques, EEG is the most popular 

technique for assessing the mental workload. This is evidenced by the number of 

articles found in the Scopus database related to EEG-based mental workload studies 

as shown in Figure 1.2. The search used the keyword ALL (“mental” AND “workload” 

AND “<technique>”). It is shown that the EEG-based mental workload studies have 

the largest number of publications compared to other measurement approaches. From 

that number, about 2254 articles were found to have implemented artificial neural 

networks (ANN) using the search keyword ALL (“mental” AND “workload” AND 
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“EEG” AND “Neural network”), while the rest articles implemented other classifiers 

such as linear discriminant, k-nearest neighbour, support vector machine etc. One of 

the reasons the EEG signal has been widely used is due to its non-invasive technique, 

safety and relatively low cost (Teplan, 2002). 

 

 

Figure 1.2: Mental workload research based on brain activity measurement 

techniques in the Scopus database (retrieved on 21st May 2022) 

 

Measuring mental workload using brain activity, especially EEG signals, has 

engaged with many applications, especially in a working environment, human factors 

and ergonomics. Combined with the recent technology of portable EEG devices, 

measuring mental workload can be performed outside of the laboratory environment. 

The experiment setup becomes flexible, the EEG devices become wearable and 

wireless, and some devices offer fewer electrodes, allowing researchers to focus on 

certain brain locations (Casson, 2019). This innovation gives an advantage to the 

mental workload assessment and is more practical for activities requiring movement 

or motor coordination such as psychomotor tasks.  

The research on mental workload with EEG can be categorised into two bases: 

studying the cognitive process itself such as semantic or recognition memory tasks 

(Klimesch et al., 1993, Puma et al., 2018, Radüntz, 2020), and classifying the mental 

effort based on general task demands such as attentional demands and task difficulty 

(Plechawska-Wójcik et al., 2019, Ismail and Karwowski, 2020). In most of these 

studies, a high number of EEG channels have been used. It is reported that the EEG 
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channels that can be associated with mental workload are commonly located in the 

frontal area (Baldwin, 2003, So et al., 2017, Albuquerque et al., 2018). For that reason, 

it is hypothesised that the use of a single or smaller number of EEG channels for mental 

workload classification is feasible. However, the study using a smaller number of EEG 

channels has not been widely explored yet. Although analysing the EEG signal using 

a smaller number of EEG channels is a challenging task, it will simplify the experiment 

setup and avoid subject inconvenience. Consequently, the measurement of mental 

workload in real environments can be accomplished without hassle. 

Therefore, this research focuses on the classification of mental workload levels 

based on two designated cognitive and psychomotor tasks using EEG signals acquired 

from two EEG channels in the frontal lobe area. The research described in this thesis 

is motivated by the many potential applications that may benefit from this approach. 

 

 

1.2 Motivation 

 

 

The study of mental workload provides a lot of benefits to many potential applications. 

Understanding the mental workload instead of only physical performance during task 

execution allows an insight into the psychological state of the performer. While 

different people can accomplish the same task with similar performance, their mental 

workload can be different depending on their prior knowledge, capability and 

experience factors (Chin et al., 2018, Tao et al., 2019).  

In the education field, students’ mental workload during a learning process 

influences their learning efficacy. If an educator can identify students’ mental levels 

by some means, students’ performance can be improved. However, a typical classroom 

has around 30 to 40 students, thus increasing the burden on the educator to 

continuously monitor students’ mental states by observing each student’s expressions 

(Xu and Zhong, 2018). Hence, monitoring the mental state during learning based on 

EEG signals is a promising approach.  

In the workplace, most companies require candidates to complete a pre-

employment task to assess candidates' abilities in specific aspects of the job offered, 

such as mental abilities (i.e. cognitive), physical abilities (i.e. psychomotor) and 

personality (Black et al., 2019). Having high cognitive and psychomotor ability 

indicates having the essential job skills and good productivity, thus likely requiring 
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less training to master a new skill. This is important to ensure a potential candidate 

performs comfortably without stress or depression with minimal supervision. While in 

a real work situation, the mental workload is measured to facilitate an optimal mental 

performance for efficient work and safety measures (So et al., 2017).  

In other applications, measuring mental workload has also been done for 

ergonomic and safety reasons. For example, the mental workload was measured in 

driving performance impairments (Paxion et al., 2014), improvement of safety in 

maritime transportation (Lim et al., 2018), prevention of operator’s underload and 

overload conditions in air traffic control systems (Aricò et al., 2016) and mitigation of 

the occurrence of human error in operating aeroplanes (Dehais et al., 2019). With so 

many applications that benefit from mental workload studies, the study is motivated 

to utilise EEG signal as a modality in measuring mental workload to obtain a better 

understanding of human performance.  

 

 

1.3 Problem statement 

 

 

Mental workload classification studies have been reported in the literature utilising 

various signal processing and classification algorithms. Recently, the availability of 

mobile EEG systems with a single or a few electrode channels has increased the 

potential to measure brain activities in real environments (Dadebayev et al., 2021). 

However, the potential of examining mental workload, particularly for cognitive and 

psychomotor tasks using mobile EEG devices with a single or a small number of 

channels still needs to be explored. 

Analysing EEG signals from a small number of channels has a limitation in 

terms of the low availability of signal sources. This is because a raw EEG signal 

usually contains artefacts such as eye blinks, heartbeats and muscle activities (Teplan, 

2002) which need to be isolated to produce a clean EEG signal. Numerous machine 

learning algorithms have been used in mental workload classification problems as 

found in the literature. Most of those classifiers are combined with other signal pre-

processing algorithms to remove or at least reduce the effect of artefact contamination 

(Islam et al., 2016). However, not all existing methods work well when using low 

numbers of EEG channels. For example, the regression and adaptive filters are not 

suitable to be used because both methods require an extra artefact reference channel, 
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which is usually not available in most mobile EEG devices. As an alternative, 

decomposition techniques such as the independent component analysis (ICA), wavelet 

transform (WT) and empirical mode decomposition (EMD) have been preferred (Jiang 

et al., 2019). Yet, ICA requires a high number of EEG channels for it to work properly. 

Then, WT can decompose a single EEG signal based on a basis function called the 

mother wavelet function. Nevertheless, WT relies on the chosen basis function to 

decompose the signal sources of interest (Urigüen and Garcia-Zapirain, 2015).  

Fortunately, EMD heuristically decomposes EEG signal in the time domain 

into a series of intrinsic mode functions (IMF) without prior knowledge of the signal 

of interest. Basically, the method is used for non-stationary and nonlinear signal 

decomposition (Wu and Huang, 2009). The original EMD method has mode mixing 

issues and sensitive to noise. Later, the method has been enhanced by adopting a noise-

assisted method called ensemble empirical mode decomposition (EEMD), which 

significantly improves the original EMD. Therefore, the EEMD method is predicted 

to be feasible to overcome the aforementioned limitation.  

Measuring mental workload using EEG signals requires a task load. The task 

load must be carefully designed so that the induced brain signal stimulated by the task 

is related to the desired mental load. Several task loads such as mental arithmetic (So 

et al., 2017, Plechawska-Wójcik et al., 2019), the n-back task (Yang and Huang, 2018), 

intelligent test (Friedman et al., 2019) and physical task in real environment (Hatfield 

et al., 2004, Christie et al., 2017) have been designed in the previous studies.  However, 

those studies do not show the effectiveness of the designed task on stimulating the 

mental workload of the subject. This is important to quantify the mental effort 

experienced by the subject during performing the task.  

Several methods can be used to measure mental effort such as NASA task load 

index (NASA-TLX) or subjective mental effort questionnaire (SMEQ). NASA-TLX 

is a multiple-factor questionnaire to measure several aspects of workload  

(Witon, 2019). It is commonly used for a long task with multiple sections. Whereas 

the SMEQ provides a single scale from 0 – 150 with nine labels of difficulty level in 

a straight line, where 0 means the easiest and 150 the hardest. In EEG research, 

subjects are recommended to not being interfered when the task is in progress because 

it has been found to disrupt the performance of the primary task (Kramer et al., 1995). 

Therefore, a simple subjective measure such as SMEQ is suitable to be used to measure 

the effectiveness of the given task load.  
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1.4 Objectives 

 

 

This thesis aims to classify mental workload levels measured using non-invasive EEG 

modalities on the frontal lobe region during the performance of cognitive and 

psychomotor tasks. To achieve the target and solve the stated limitations, the detailed 

objectives of the research are as follows: 

i. To design tasks that can stimulate the mental workload of a cognitive and 

psychomotor task. 

ii. To develop a classification framework based on EEMD and ANN for 

applications using a small number of EEG channels. 

iii. To investigate the relevant EEG features associated with the mental workload. 

iv. To validate the proposed method using accuracy and F1-score. 

 

 

1.5 Scope of research 

 

 

The research is primarily acquiring EEG signals on the frontal lobe of the brain during 

specific cognitive and psychomotor tasks. The research was done according to the 

following scopes: 

i. The raw EEG signals are acquired on the frontal lobe area with two 

electrodes, specifically at the AF3 and AF4 electrode positions. 

ii. The Emotiv Insight mobile EEG device was used for EEG signal 

acquisition. 

iii. Thirty subjects aged from 19 to 21 years old were voluntarily involved in 

the data collection. 

iv. A mental arithmetic task and a building structure task were designed to 

represent the cognitive and psychomotor tasks, respectively. 

v. Both tasks were carried out in an isolated space by completely displaying 

the instruction and questions on a laptop without instructor intervention. 

vi. Two states of mental workload, “Low” and “High” are considered for the 

classification purpose. 

vii. MATLAB 2019b software is used in this research with a laptop powered 

by Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz and 8 Gigabytes of 

RAM.  
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1.6 Significance of study 

 

 

This research’s findings will benefit the research community in biomedical 

engineering and neuroscience, considering the recent needs in mental health study. 

The research provides a framework for selecting the most relevant components in EEG 

signal which are associated with the mental workload. Moreover, the feasibility of the 

framework to be used on a single source of EEG signal analysis, it is predicted to give 

advantages to the use of mobile EEG devices in numerous applications. 

 

 

1.7 Thesis outline 

 

 

Chapter 1 introduces the EEG-based mental workload application and its benefit for 

future use. The problem statement on the EEG-based mental workload classification 

is also described here, along with the direction of the research. 

Chapter 2 reviews the theoretical background, methodology, analysis, 

performance measures and previous related works on measuring mental workload 

using EEG signals. The gap analysis and the proposed approach is stated here. 

Chapter 3 overviews the methodology of the study such as the experimental 

design and procedure. A brief description of the proposed EEG-based mental workload 

classification using a two EEG channels is presented. The experimental analysis of the 

proposed classification method is also presented. 

Chapter 4 presents the findings on the mental workload effect on the EEG 

signal. The performance results of the proposed classification method are also 

presented and discussed. 

Chapter 5 summarises the research processes, concludes the research outcomes 

and states the future recommendations.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

 

 

This chapter provides a review of the previous works on EEG-based mental workload 

classification focusing on the utilisation of a single or a small number of EEG 

channels. The review begins with the background research on mental workload 

studies, followed by an introduction on the brainwave functions. Accordingly, a brief 

discussion on the previous related works regarding to mental workload stimulation 

task, EEG signal processing, feature extraction and classification approach are 

presented. Finally, the research gap in EEG-based mental workload classification is 

presented. 

  

 

2.2 Research background 

 

 

Mental workload studies have almost been tripled since the 1980s (Young et al., 2015). 

Previous mental workload studies have been implemented in various applications, 

especially on the safety and ergonomics of the working environment. Imposed by 

modern technology, recent challenges in working environments have increased the 

cognitive demands upon workers. For example, the recent outbreak of the COVID-19 

pandemic has impacted the working style and education process where the home-based 

working has been implemented (Bolisani et al., 2020, Pokhrel and Chhetri, 2021). This 

situation distracts the mental condition of the workers as the implementation of the 

online approach is not well prepared by some individuals. Therefore, an evaluation of 

mental workload is important to ensure the best possible individual performance. 
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