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ABSTRACT 

The subsurface detection technique is one of the most frequent techniques used in Civil 

Engineering to improve the features of underground object identification. This study 

focused on accuracy, detectability, and reliability of the underground detection 

method. Ground Penetration Radar (GPR) is the best option in the determination of 

any buried objects which need to know the location installed and the depth of the 

object. However, GPR has an issue for detection due to the object subsurface detection 

especially in quaternary age area that poses high-water table which is the conflict of 

detection. Others geophysical method which is seismic reflection can be used for 

detection in high water table condition. Seismic reflection waves can be used to 

characterize anomaly properties at the homogeneous layer, specifically for sensitivity 

measurement quality control. The models were used, starting with a scaled-down 

shallow object detection model at 0.3 m depth. For measurements of soil conditions 

with the physical object model, the reflectivity profile showed a significantly higher 

amplitude at the top reflection than the measurements of soil conditions without an 

object that showed a decreased reflectivity amplitude. More intriguingly, the findings 

revealed that the reflectivity relationship varied depending on the diameter and depth 

of the object in the classification of irregular anomalies because reflection energy may 

generally propagate through anomalies, the object's dispersion, attenuation, and 

reflections may change the wave amplitude as it approaches the receiver. These 

findings reveal that sensor location in relation to the survey target does affect 

reflectivity profiles. This study shows that reflected waves can be used for object 

detection when employing the Single-channel reflection wave (SRW) approach, with 

an accuracy of 81.25 percent for the air-filled voids, 91.88 percent for water-filled 

voids, and 87.5 percent for buried pipes. 
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ABSTRAK 

Teknik pengesanan bawah permukaan adalah salah satu teknik yang paling kerap 

digunakan dalam Kejuruteraan Awam untuk menambah baik ciri-ciri pengenalan 

objek bawah tanah. Kajian ini memberi tumpuan kepada ketepatan, kebolehkesanan 

dan kebolehpercayaan kaedah pengesanan bawah tanah. Radar Penusukan Tanah 

(GPR) adalah pilihan terbaik dalam penentuan mana-mana objek tertimbus yang perlu 

diketahui lokasi dipasang dan kedalaman objek. Walaubagaimanapun, GPR 

mempunyai isu untuk pengesanan bawah permukaan objek terutamanya di kawasan 

umur kuaternari yang mempunyai paras air tinggi. Kaedah geofizik lain iaitu pantulan 

seismik boleh digunakan untuk pengesanan dalam keadaan aras air yang tinggi. 

Gelombang pantulan seismik boleh digunakan untuk mencirikan sifat anomali pada 

lapisan homogen, khususnya untuk kawalan kualiti pengukuran sensitiviti. Model-

model tersebut digunakan, bermula dengan model pengesanan objek cetek yang 

diperkecilkan pada kedalaman 0.3 m. Bagi pengukuran keadaan tanah dengan model 

objek fizikal, profil pemantulan menunjukkan amplitud yang lebih tinggi secara ketara 

pada pantulan atas berbanding pengukuran keadaan tanah tanpa objek yang 

menunjukkan amplitud pemantulan menurun. Lebih menarik, penemuan 

mendedahkan bahawa hubungan pemantulan berbeza-beza bergantung pada diameter 

dan kedalaman objek dalam klasifikasi anomali tidak teratur kerana tenaga pantulan 

secara amnya boleh merambat melalui anomali, penyebaran objek, pengecilan dan 

pantulan boleh mengubah amplitud gelombang kerana ia mendekati penerima. 

Penemuan ini mendedahkan bahawa lokasi penderia berhubung dengan sasaran 

tinjauan mempengaruhi profil pemantulan. Kajian ini menunjukkan bahawa 

gelombang pantulan boleh digunakan untuk pengesanan objek apabila menggunakan 

pendekatan gelombang pantulan saluran Tunggal (SRW), dengan ketepatan 81.25 

peratus untuk lompang berisi udara, 91.88 peratus untuk lompang berisi air, dan 87.5 

peratus untuk lompang berisi air. paip tertimbus. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of research 

 

Undetected underground objects or anomalies such as breakages of buried 

utilities, voids, and cavities can lead to natural disasters that consequently become 

national issues. In this study, an “anomaly” is defined as a buried object with different 

physical and chemical properties to those of the surrounding soil. Buried anomalies 

are either man-made or natural. Examples of anomalies commonly found underground 

are utilities such as water pipes, electric cables, fiber optics, and cavities. In civil 

engineering, unverified buried objects or anomalies can delay construction operations, 

weaken building foundations, and potentially cause destructive events. Problems arise 

when unknown objects remain undetected during construction operations, which can 

lead to serious hazards, delays, and cost increments (Glover & Wajzer, 2017). 

Therefore, hidden objects must be discovered at the earliest possible stage of any 

engineering project. 

 

Hidden objects take many forms, such as voids, underground utilities, and even 

unknown basements or culverts, abandoned wells, mine shafts, and underground 

scouring. These can lead to problems like landslides (Kong, 2009), sinkholes (Ling, 

2017), and soil erosion (Sri Praya, 2021), as illustrated in Figure 1.1. 
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Figure 1.1: The example of disaster occurs by poorly maintained damaged drainage system 
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Despite years of research, the delineation and detection of subsurface objects 

remains a difficult and expensive task within modern geophysics (Butler, 2008). One 

focus of the current study is the specific term “underground detection”, which is used 

to describe findings related to approximate positions, depths, and sizes. Conventional 

geotechnical site characterization techniques are used to identify underground features 

such as penetration testing and soil trenching (Mayne, 2012). These methods involve 

the direct observation of underground materials but are extremely invasive. For 

example, when drilling is conducted over these objects, the sudden drop of an auger 

and the loss of drilling fluid are expected. Therefore, the conventional methods 

frequently fail to observe the objects and misrepresent the subsurface geology. A rapid, 

inexpensive, and reliable object detection technique could have major economic 

potential by enabling improved performance in environmental and engineering 

applications. 

 

Underground detection involves a range of in situ tests using penetration and 

geophysical testing. Cost and time constraints are the main reasons behind the 

difficulty of investigating the subsurface completely using conventional methods 

(Madun et al., 2016). Conventionally, field testing is involved only for limited areas, 

which may mean that objects’ positions remain undiscovered. To enhance the certainty 

of a site investigation, a dynamic approach must be implemented. Geophysical 

methods can provide better trace resolution and thus improve the definition of the 

subsurface geology, with better and thinner subsurface layer identification across a site 

(Song, 2015).  The main advantages of these approaches are they are non-destructive 

and non-invasive, and they offer a quick assessment. Other geophysical techniques 

such as magnetism, ground-penetrating radar, and electrical resistivity are useful 

imaging tools, but they require significant skills, a good knowledge of the area’s 

geological model, and support from the surveyed data to interpret the results 

successfully, as demonstrated by Gambetta et al. (2011),  Leech and Johnson (1992), 

and  Long (1998). 

 

Vadillo et al. (2012) implied that small, near-surface objects can be detected 

with geophysical methods, whilst deeper ones need to have a certain minimum height 

and width to be imaged. Choosing which geophysics tests to use depends on the 

parameters to be examined. The detection of objects is mainly performed using 
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geophysical methods. Uncertainty over the selection of geophysical techniques may 

arise due to several factors, such as porosity, groundwater, locally complex geological 

contexts, and coordination. For example, Electrical Resistivity Tomography (ERT) 

may be appropriate in dolomitic rocks (Van Schoor, 2002), ground-penetrating radar 

gives optimal results for shallow detection in the absence of groundwater (Grandjean 

& Leparoux, 2004) or in glacial environments (Taurisano, et al., 2006), and high-

resolution seismic-reflection methods can be used to detect shallow objects (Driad & 

Piwakowski, 2002).  

 

Different geophysical methods have been employed to identify underground 

anomalies, including seismic refraction (Engelsfeld et al., 2008; Nolan et al., 2011; 

Sloan et al., 2013), surface wave (Grandjean & Leparoux, 2004; Nasseri-Moghaddam 

et al., 2005;  Cascante, & Phillips, 2005b; Xia et al., 2007; Xia et al., 2006), gravimetry 

(Bitri et al., 2014; McKenna et al., 2016; Chromčák, et al., 2016), resistivity (Bianchi 

et al., 2013; Cardarelli et al., 2010; Putiška et al., 2012), and ground-penetrating radar 

(Tavakoli Taba et al., 2015; Karlovsek et al., 2012; Cassidy et al., 2011). Seismic 

reflection (Mohanty & Barala, 2016;  di Fiore et al., 2013; Buckley & Lane, 2012; 

Inazaki et al., 2005; Inazaki et al., 2004; Branham & Steeples, 1988; Hunter et al., 

1984; Miller & Steeples, 1994; Miller & Steeples, 1991) has also been utilized. 

 

The extreme contrast between the elastic properties of objects and those of the 

surrounding geology provides an excellent reflecting interface. To evaluate the wave 

propagation, whereby a reflected wave is in a homogeneous medium, the Finite 

Difference Method (FDM) offers a promising means of visualization and could be 

implemented for field testing. For solving partial differential equations, the FDM has 

been developed and used for years in engineering applications. Finite difference 

solutions have since become extensive. Alterman and Karal (1968) were actively 

involved in using the FDM to solve the vector elastic wave equation for various initial 

and boundary conditions. The FDM used a velocity–stress formulation on a staggered 

grid. On the other hand, an advantage of the FDM is that its numerical implementation 

is considerably simpler than that of the finite element method (Frehner et al., 2008). 

 

The FDM has been used to study dispersion curves, amplitude-depth 

distributions, and the scattering of Love waves (Buchanan, 1986). Li et al., (1995) 
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analyzed the Frequency-dependent estimation of Love-type channel waves with a 

symmetrical, homogeneous, three-layered linear elastic model and developed a 

deterministic pure phase shift filter to extract the fundamental mode from multimode 

Love waves (Li, 1997). Gelis et al., (2005) investigated the seismic responses of 

objects of different shapes and depths, as well as the existence of an altered zone, by 

means of synthetic modeling and frequency-domain studies. Modeling the propagation 

of elastic seismic waves, they computed time histories using a 2-D finite difference 

program. To avoid reflections from the boundaries of the numerical model and for the 

wavefield to propagate parallel to the edges, the code featured a perfectly matched 

layer absorbing boundary condition. 

1.2 Research problem statement 

Detecting subsurface anomalies is considered of great interest in many 

engineering projects. Numerous effective applications of detection methods for 

underground anomaly detection have been reported; nevertheless, additional 

experimental and analytical research is necessary to appreciate the nuances of the 

acquired data. At the quaternary ages, the sub profile was consisting of clayey material 

which is associated with high-conductivity materials where the water table is high 

(Riwayat et al., 2022). Problems occur when surveying shallow subsurfaces, with 

objects remaining unseen because of a high-water table, especially when using ground-

penetrating radar. Ground-penetrating radar (GPR) has problems locating objects at 

shallow depths when dealing with high-conductivity materials such as areas with a 

high-water table. Moreover, wetter materials (water, in this case) that produce higher 

conductivity can cause radar signals to attenuate and the depth of penetration is 

therefore reduced (Ismail & Saad, 2012). Waterlogged soils, such as silts and clays, 

will absorb radio waves and indirectly preventing them from traveling into the ground 

surface (Ling  et al., 2020). In this circumstances, the electromagnetic waves pass into 

the wet ground, it is impossible to tell anything about the subsurface because it is 

heavily attenuated in wet clay materials. (Utsi, 2012) 

 

This research utilized a seismic reflection system. The Single-channel 

Reflection Wave (SRW) and Multiple-channel Reflection Wave (MRW) methods 
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using an optimum number of receivers were employed in this study. Furthermore, this 

approach used a consistent impact source, with a measurement optimization that 

allowed objects to be characterized and located. The design of Finite Difference Time 

Domain modeling by using parameter from the field study would be a successful idea, 

whereby an object detection method could be developed by synthetically 

programming. The proposed method employed a clearly defined data analysis 

algorithm by using time domain reflectivity profile covering the amplitude properties. 

 It is suitable as a detection technique, easy to perform, cost-effective, and can 

cover shallow subsurface objects. The objective of this research was to examine P-

wave reflection techniques for the identification and characterization of objects at 

specific depths. The data processing method enabled an analysis of the subsurface 

velocity with alternating variations in density over short distances, resulting in success. 

In addition, simulation and physical field tests were calibrated for better 

understanding. A strategy for the rapid, low-cost, and accurate detection of objects 

could have huge economic potential, with enhanced detection techniques resulting in 

better engineering solutions. 

1.3 Research aims and objectives 

The aim of the study was to develop an acoustic-based system for obtaining 

and utilizing data to detect buried objects, thus enabling them to be 

characterized. To achieve this aim, the research objectives were as follows:  

i. To develop an acoustic-based system, consisting of an acoustic impact source

(hammer), accelerometer sensors, a data acquisition system (DAQ), and

interpretation software to record the wave trace;

ii. To design modelling of seismic reflection based on a Finite Difference Time

Domain (FDTD) model of a homogeneous for a preliminary study through

preliminary field testing;

iii. To validate a significant methodological approach, with sensor positioning or

array enables with hardware functions as intended upon shallow objects based

on their time domain reflectivity profile.
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