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ABSTRACT 

 

 

 

The over ground gait rehabilitation is one of the popular rehabilitation devices to 

enhance rehabilitation outcome while reducing therapist’s workload. However, in 

practice, it is a challenging task to design a system that is easily affected by uncertainties 

and external disturbances from the wheeled mobile robot (WMR). Thus, it is hard to 

maintain its stability and robustness when dealing with patients who are disabled to 

walk. It is very risky to let off this concern. The strategies of trajectory tracking control 

of the WMR can provide better motion and steer ability while assisting patients 

through gait treatment to improve rehabilitation outcomes. Therefore, a suitable 

controller is designed to ensure stability in human-robot interactions. In this work, a 

new control law has been proposed by improving the switching law of the sliding mode 

controller (SMC) to eliminate the chattering effect in the control system called 

Terminal Super Twisting Sliding Mode Control (TSTSMC). The enhanced TSTSMC 

uses sliding mode control techniques to achieve high-precision tracking of a reference 

signal with Cuckoo optimisation. The proposed TSTSMC algorithm enhances control 

law for the trajectory tracking control while reducing the chattering effect in the control 

system. The TSTSMC was tested for external disturbance and uncertainties to evaluate 

the chattering suppression of the controllers. The TSTSMC was benchmarked with 

SMC (SMC), Terminal SMC (TSMC) and super twisting SMC (STSMC), and terminal 

Super Twisting SMC (TSTSMC) without optimisation. A simulation study shows that 

the TSTSMC algorithm improves the chattering and steady error by up to 35% and 

25%, respectively. The translational velocity from the data sampling that has been used 

in the control law simulation gives results within an average normal gait speed. The 

average speed performed by the WMR is 1.25ms-1 which is lesser than the normal 

speed. The proposed controller algorithm has been proven to provide trajectory 

robustness and stability for WMR and can be extended for future improvement for gait 

assistive devices. 
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ABSTRAK 

 

 

 

Pemulihan berjalan di atas tanah adalah salah satu alat pemulihan yang popular untuk 

meningkatkan hasil pemulihan sambil mengurangkan beban kerja ahli terapi. Walau 

bagaimanapun, secara praktikalnya, merekabentuk system adalah satu tugas yang 

sangat mencabar kerana mudah dipengaruhi oleh gangguan luaran daripada robot 

mudah alih beroda (WMR). Oleh itu, untuk mengekalkan kestabilan dan keteguhan 

pesakit yang kurang upaya untuk berjalan adalah sangat berisiko. Isu ini adalah sukar 

untuk diabaikan. Strategi kawalan penjejakan trajektori WMR boleh memberikan 

pergerakan yang lebih baik dan keupayaan mengemudi sambil membantu pesakit 

melalui rawatan berjalan untuk meningkatkan hasil pemulihan. Oleh itu, pengawal 

yang sesuai direka untuk memastikan kestabilan terhadap interaksi robot-manusia. 

Dalam kerja ini, undang-undang kawalan baharu telah dicadangkan dengan 

menambahbaik undang-undang pensuisan Kawalan Ragam Lincir (SMC) untuk 

menghapuskan kesan berbual dalam sistem kawalan yang dipanggil Terminal Super 

Twisting Sliding Mode Control (TSTSMC). TSTSMC yang dipertingkatkan 

menggunakan teknik kawalan ragam lincir untuk mencapai penjejakan berketepatan 

tinggi bagi isyarat rujukan dengan pengoptimuman Cuckoo. Algoritma TSTSMC yang 

dicadangkan meningkatkan undang-undang kawalan untuk kawalan penjejakan 

trajektori sambil mengurangkan kesan penggelatukkan dalam sistem kawalan. 

TSTSMC telah diuji untuk gangguan luaran dan ketidakpastian untuk menilai 

penggelatukkan yang telah dimansuhkan. TSTSMC telah ditanda aras dengan SMC 

(SMC), Terminal SMC (TSMC) dan Super Twisting SMC (STSMC) dan Terminal 

Super Twisting SMC (TSTSMC) tanpa pengoptimuman. Kajian simulasi 

menunjukkan bahawa algoritma TSTSMC meningkatkan ralat penggelatukkan dan 

keadaan mantap masing-masing sehingga 35% dan 25%. Halaju translasi daripada 

pensampelan data yang telah digunakan dalam simulasi undang-undang kawalan 

memberikan keputusan dalam purata kelajuan berjalan normal. Kelajuan purata yang 

dilakukan oleh WMR ialah 1.25ms-1 yang lebih rendah daripada kelajuan biasa. 
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Algoritma pengawal yang dicadangkan telah terbukti memberikan keteguhan dan 

kestabilan trajektori untuk WMR dan boleh dilanjutkan untuk penambahbaikan masa 

depan untuk peranti bantuan berjalan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION  

 

 

 

 

1.1 Introduction  

 

Chronic diseases such as Spinal Cord Injury (SCI), stroke, and Parkinson's disease 

are neurological disorders that can cause a permanent handicap if not treated 

effectively. In Malaysia, stroke is among the most significant contributors to deadly 

diseases [1]. More worrisome is that this fatal disease, usually seen in older people, has 

started to spread to people as young as their 30s, and there has been a huge rise in this 

[1-2]. Patients are burdened with their health problems and medical expenditures for 

the treatment needed during the therapy [2-3]. 

Robotic devices are used as mobile devices that provide walking lessons to 

regain the patient’s walking ability. Gait-oriented training can enhance recovering the 

loss of ability to ambulate caused by neurological disorders, and the number is rising 

with the aid of robotic devices [4]. Robotic devices provide patients with various 

functions that improve rehabilitation outcomes while reducing therapist workload. 

With the advent of robot-aided rehabilitation techniques, this process will become 

smoother, potentially covering a broad scope of therapy, ultimately making it even 

more effective [5-7]. 

Rehabilitation robotics has widely evolved over the last few decades, since the 

early 1960s. One of the most essential studies among researchers is robotics-aided gait 

neurorehabilitation. Overground gait neurorehabilitation is a rehabilitation therapy for 
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individuals with movement disorders caused by neurological conditions such as stroke, 

spinal cord injury, or traumatic brain injury. The pioneer researchers regarding robotic 

devices have proven more effective, and the degree of ailments can be reduced 

simultaneously with patients’ positive development [8]. There is growing evidence that 

chronic stroke patients can improve their motor skills with the help of good robotic gait 

education [4], [6-9].  

The discipline of mobile robots in gait re-education is concerned with the 

stability and robustness aspects. Various rehabilitation robots may vary based on the 

degree of disability of an individual. From exoskeletons to overground gait-oriented 

rehabilitation robots, the aim is to increase the incentive of walking independently for 

inability people back into the workforce. Both treadmill and overground machines give 

a different experience to the patient. To boost their confidence in walking, the 

overground gait devices may greatly help them. Several robotic devices cater to gait 

problems, such as Ekso Bionics Exoskeleton, ReWalk, Indego Exoskeleton, HAL 

(Hybrid Assistive Limb), Andago, and Lokomat. Figure 1.1. shows a Wheeled Mobile 

Robot (WMR) that can assist patients in walking and provide support during the gait 

treatment. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Andago [10] 

 

 With this robotic-assisted device, gait therapy will be much easier, and walking 

ability can be gained in a shorter period. Andago is designed to help patients with gait 

impairment regain their walking power [11]. Unlike traditional approaches, robotic 

devices can offer intensive gait re-education that supersedes the conventional 

rehabilitation method. Gait training helps to improve balance, motor control, weight- 
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bearing ability, and the re-creation of a natural gait [4]. Patients can reach the highest 

levels of physical function through rehabilitation. 

The over ground gait training device currently experiences progression as it 

offers practical and optimised recovery procedures for neuro patients. The robot’s 

behaviour is based on the kinematic criteria presented in the types of WMR. The 

nonholonomic WMR is easier to design and control but cannot render freely and is 

classified as an under-actuated robot. It appears to contradict the holonomic drive as it 

is said to be unconstrained [12]. The total number of freedoms may affect the robot's 

discipline, thereby making the robot perform as desired. However, the nonholonomic 

mechanism offers no longitudinal and lateral slipping during wheel motion. Figure 

1.2 shows the nonholonomic WMR called Differential drive WMR (DDWMR). 

 

 

Figure 1.2: Differential drive WMR configuration [13] 

 

 Differential drive robots are equipped with two drive wheels, which are often 

powered by electric motors. These wheels are responsible for propelling the robot and 

enabling it to move. The term differential drive comes from the way these robots 

control their motion. They can move forward, backward, turn left, or turn right by 

independently varying the speed and direction of rotation of the two drive wheels. This 

differential motion control is achieved by providing different speeds or directions of 

rotation to the two wheels. To turn, a differential drive robot can execute two main 

types of turns. When one wheel spins faster than the other in the opposite direction, it 

will cause the robot to pivot in place. On the other hand, if one wheel spins faster than 

the other in the same direction, the robot will follow an arc-shaped path.  

x 
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 It is a challenging task to design trajectory tracking for the WMRs as the 

trajectory tracking will try to follow the reference trajectory of its desired path under 

nonholonomic constraints [14-16]. Changes in the terrain, unexpected obstacles, or 

variations in traction can affect the robot’s ability to follow planned trajectory. 

Designing trajectories that are robust to these uncertainties is a challenge. Over the 

years, many different tracking controllers have been suggested to solve the problem of 

controlling the trajectory tracking of the nonholonomic WMR. Some of the control 

approaches from previous researchers are nonlinear, optimal, adaptive, and robust [17]. 

 To ensure the WMR is designed with such a high degree of stability and 

robustness, it must be equipped with a controller that fulfils those criteria: trajectory 

tracking control algorithms that help maintain stability and robustness during 

movement. Sliding Mode Control (SMC) is an effective method for nonlinear systems 

that can deal with stability and robustness issues [18–19]. One of the SMC family is 

the Terminal SMC (TSMC) which is good at minimising the tracking error and 

maximising the convergence speed [20]-[23]. However, suffer from chattering issues 

that led to the integration of the Super Twisting SMC (STSMC), which can attenuate 

the chattering phenomenon [24-28].  

 

1.2 Problem Statement 

 

Robotics rehabilitation with over-ground walking is more advisable to upgrade gait 

performance and introduce standard gait patterns with actual foot contact [28–29]. 

However, designing a system that is easily affected by uncertainties and external 

disturbances, it is hard to maintain its stability and robustness [29-35]. It is quite 

dangerous to let this problem go when dealing with patients who are unable to walk. 

The WMR should follow the reference trajectory safely. Hence, the trajectory 

tracking control of the WMR is crucial when dealing with uncertainties and 

disturbance issues. It motivates the need for an enhanced controller to curb the 

drawbacks of the gait assistive device. It is crucial to properly derive the kinematic and 

dynamic modelling of WMR properly for trajectory tracking control. Inaccurate 

modelling leads to incorrect movements and positioning, unstabilised the robot, and 

reduces the effectiveness of the rehabilitation [36-40]. Therefore, a proper kinematic 

and dynamic modelling is crucial before designing the controller. By incorporating 
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accurate modelling into the trajectory tracking design, rehabilitation robots can 

provide an effective and safe rehabilitation process [41-45]. 

 The SMC-based method has been widely proposed for trajectory tracking issues 

[19], [46-51]. SMC is good at facing issues associated with external disturbances and 

uncertainties. It is well known as a robust controller in the uncertain WMR system 

[52–54]. Although SMC claims it is good at managing issues, the chattering 

phenomenon has become a significant drawback of this controller. Conventional SMC 

gives slow state convergence, requiring higher steady-state precision and greater 

control force [55-57]. To enhance the robustness of WMR, its needs to be integrated 

with an enhanced controller algorithm. The controller will help to generate smooth 

movement, help to reduce the risk of falls and improve the individual's gait. Therefore, 

designing a controller that can overcome perturbations due to plant uncertainties and 

external disturbances is highly desirable. If chattering occurs in overground gait in over 

ground gait neurorehabilitation, it can result in poor trajectory tracking performance, 

excessive control efforts, and potential damage to the rehabilitation robot or the patient 

[45], [58-59]. Chattering occurs when the control inputs oscillate rapidly, leading to 

instability and unpredictable behaviour. It can negatively impact the rehabilitation 

outcome and the patient's ability to perform the desired gait movement. [43-45]. It is 

important to design a control system that minimises or eliminates chattering to ensure 

a safe and effective rehabilitation process. 

 This thesis proposes an enhanced SMC model, the Terminal Super Twisting 

SMC (TSTSMC) algorithm based on a wheeled mobile robot to provide better 

trajectory tracking. The proposed algorithm takes advantage of the robustness and 

stability of the DDWMR platform for rehabilitation purposes. The Cuckoo 

Optimisation (CO) algorithms were then integrated into TSTSMC and the 

nonholonomic WMR, allowing a stable and robust system to be designed. 

 

1.3 Research Objectives 

 

The main goal of the work is to propose a SMC algorithm that provides better trajectory 

tracking of the nonholonomic WMR for over ground gait neurorehabilitation. To do 

so, the Terminal and Super Twisting SMC are integrated into the controller to achieve 

better performance. The Cuckoo Optimization is used to find the optimal solution for 
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the gain of the proposed controller. To achieve the main goal of the work, the specific 

objectives of the research include the following: 

i. To develop the kinematic and dynamic model of the nonholonomic 

differential drive. 

ii. To design a robust controller TSTSMC for the DDWMR for trajectory tracking 

control. 

iii. To verify the performance of the proposed controller algorithms using 

comparative study with other families of SMC strategies. 

 

1.4 Research Scopes 

 

The research scope will cover the area of gait rehabilitation, focusing on the mobile 

robot for over ground gait neurorehabilitation. The scopes are crucial for planning, 

executing, and communicating research effectively. The research development is 

within these mentioned scopes: 

i. To apply the design of kinematics and dynamics of the nonholonomic WMR to 

the system. 

The nonholonomic WMR consists of a two-dimensional plane; the Cartesian 

plane is used in the proper research. For the differential drive WMR, it's assumed 

that it is rolling without slipping. The trajectory tracking for the standard 

kinematic model for differential drive nonholonomic WMR is formulated to 

follow the reference path at a specified velocity. The actual Andago parameters 

are then injected into the WMR model to resemble the gait device effectively. 

The Andago platform specification data is taken from Physiotherapy Unit, 

Rehabilitation Centre by the Social Security Organization of Malaysia 

(PERKESO), Melaka, Malaysia. 

ii. Perturbation of the WMR system 

When the kinematics and dynamics of the robot are precisely determined, the 

controller is implemented to be compatible with behaving in line with its 

environment. However, the uncertainties and external disturbances will affect 

the controller's effectiveness. The actual mass of the WMR is supposed to be 

uniformly distributed all the time and to be time-varying with bounded 

uncertainty with known nominal mass. Due to time-varying mass, the moment 

of inertia becomes time-depending with bounded uncertainty. 
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iii. Case study to gait re-education 

Collaboration with the Rehabilitation Centre by the Social Security 

Organization of Malaysia (PERKESO), Melaka, Malaysia will be a highlight 

in this research study as a case study will be another contribution to validate the 

whole work by running a case study based on the proposed gait re- education 

concept. A medical perspective is critical in designing a device for human 

function that partially restores their condition. The velocity and the root mean 

square (RMS) acceleration will be generated concerning the human body’s 

comfort. 

iv. Software development 

Matlab is used for the software development for the TSTSMC algorithm. 

Matlab offers simulation capabilities for various domains. It allows to build the 

mathematical model of the differential drive WMR, simulate the system 

behaviour, and analyze the simulation result of the proposed controller.  

 

1.5 Research Contribution 

 

This research is proposed to produce an improved SMC algorithm as its optimisation 

method for trajectory tracking of nonholonomic WMR. The contributions of this 

research can be referred as below: 

 

i. The kinematics and dynamics of Andago 

The derive kinematics and dynamics of DDWMR for rehabilitation purposes 

are based on the Andago platform. 

ii. The enhanced control law for the trajectory tracking control 

To remove the chattering effect in the control system, a new control law has 

been proposed to improve the switching law of the SMC controller. The aim is 

to ensure that the tracking error will gradually converge into the boundary layer 

while the control torques amplitudes outside the boundary layer remain larger. 

When this result is achieved, the chattering is successfully reduced. The control 

law of the TSTSMC is proposed for this research to achieve robustness and 

stability provided by the WMR platform for rehabilitation purposes. 
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iii. A new design and application of TSTSMC in rehabilitation 

This can be achieved after the proposed controller is applied to the modelling 

of the over ground gait rehabilitation. The modelling can give a better trajectory 

while patients are having therapy using this device. The robustness and stability 

issues can be improved with the trajectories' accuracy being composed by the 

TSTSMC. Hence, gait therapy can be done safely and smoothly. 

 

1.6 Thesis Outline 

 

This thesis comprises five chapters. This report begins with Chapter 1, which includes 

the background of the research study. The problem statement represents the current 

situation as it contributes to some downsides of the work. The objectives are to 

highlight the aim, specifically for the discussed issues. The final subchapter is the 

research scope, where the idea of the academic work is briefly discussed. 

Chapter 2 is attained by compressing the literature work that has been done 

previously. Starting from the rehabilitation perspective, the mobile robot’s behaviour 

subsequently takes on two different behaviours, which are holonomic and 

nonholonomic. The holonomic refers to the differential drive, while the nonholonomic 

alludes to the omnidirectional movement. Then, the application of the mobile 

rehabilitation robot invented so far is also presented as the reference while pursuing 

this research. The previous study on trajectory tracking control and SMC families is 

also discussed. 

The modelling of nonholonomic WMR in Chapter 3 describes the project 

implementation and modelling of the nonlinear system of over ground gait 

neurorehabilitation. A brief outline is devoted to illustrating the flow of the study in 

achieving the aim of designing a better gait assistive device for human needs. 

Next, Chapter 4 briefly demonstrated the design of the trajectory tracking 

controller. The control law of the proposed controller is discussed in this chapter. The 

controllers within the SMC families are then put into a comparative study for 

controller performance. 

Chapter 5 describes the results and analysis of the proposed controller. The 

selected controllers are compared with the proposed nonlinear controller. The study of 

the mentioned issue analyses the proposed work to align with the simulated design's 
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