A MODELLING APPROACH OF 2D AND 3D CARRIERLESS AMPLITUDE PHASE MODULATION USING VCSEL IN ACCESS NETWORK TRANSMISSION SYSTEM

NORIDAH MOHD RIDZUAN

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

AUGUST 2023

Specially dedicated to my respected parents Markonah and Mohd Ridzuan, my parents in law Norjanah and Sarkawi, my beloved husband Hafez, my adorable children Aqeela, Ashraf, Arsyad, and Amsyar, my siblings, and all my friends,

for their love, pray, continuous support, courage, and understanding.

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah S.W.T for the blissful gift endowed upon me and for giving me the guidance and strength to pursue this study and complete this research.

First and foremost, I would like to express my most sincere thanks to my supervisor, Prof. Dr. Mohammad Faiz Liew Abdullah for his valuable advice, knowledge, support, consideration, and personal kindness throughout the duration of this research. Even with his busy schedule, he is willing to spend his time helping and guiding me through the crucial period of this research.

I would also like to extend my utmost gratitude to my co-supervisor, Assoc. Prof. Dr. Maisara Othman who gave me a lot of information and helped me whenever needed. I am very much indebted to her tremendous guidance, skill, encouragement, and enthusiasm during this research.

Special thanks to my husband Hafez Sarkawi for his assistance, patience, motivation, and inspiration during this critical time of this study. All my thanks and appreciation are also dedicated to my respected parents, siblings, and friends for their moral support, prayer and understanding.

Finally, I would also wish to take this opportunity to acknowledge others who helped me or were involved in this research either directly or indirectly. Their help is deeply appreciated.

Once again thank you very much.

ABSTRACT

Multi-dimensional carrierless amplitude and phase (CAP) modulation format is a high spectral efficiency modulation format, which allows realization of high order data modulation by employing a digital finite impulse response (FIR) filter with several taps to generate orthogonal waveforms. The reduction in system structure complexity makes CAP modulation format attractive and versatile since it requires relatively less computation and low implementation cost. However, experimental work is the most common practice when implementing the CAP signal using vertical cavity surface emitting laser (VCSEL) in optical transmission system. The experimental work may be constrained by several factors, for example, the availability or high cost of the intended equipment, limitation of time and lab usage, and logistic factor. The equipment and facilities also may affect the design as one cannot regulate or control the conditions as desired. Therefore, a 2D and 3D CAP modulation using VCSEL in access network transmission system is modelled via MATLAB program. The 2D and 3D CAP signal is transmitted using VCSEL through 20 km of single mode fiber (SMF) transmission. A bit error rate (BER) below a forward error correction (FEC) limit of 2.8×10^{-3} for error-free reception is obtained. Spectral efficiencies of 1.89 b/s/Hz and 1.33 b/s/Hz are reported for 2D-CAP-4 and 3D-CAP-4, respectively. The 2D-CAP-4 and 3D-CAP-4 performance using VCSEL for 20 km of SMF transmission is compared with the previous experimental works where the results show a 5.6 dB and 5.4 dB power penalty, respectively, hence prove the validity of the developed 2D and 3D CAP-VCSEL transmission system model for access network environment. This modelling graphically represents how things might look and helps to gain insight into which parameters are most important and significant to the system performance. As a result, this modelling can become a good alternative as it allows the understanding of the research work in an ideal setting and its potentially near-to-actual performance can be a guideline before the real-time implementation takes place.

ABSTRAK

CONTENTS

	TITI	LE	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	ТПАК	vi
	CON	ITENTS	vii
	LIST	T OF TABLES	x
	LIST	T OF FIGURES	xi
	LIST	COF SYMBOLS AND ABBREVIATIONS	xiv
	LIST	OF APPENDICES	xxii
CHAPTER 1	INTE	RODUCTION	1
	1.1	Overview	1
	1.2	Research Motivation	9
	1.3	Problem Statement	15
	1.4	Objectives	16
	1.5	Scope of the Research	17
	1.6	Thesis Organization	20

CHAPTER 2	LITE	RATURE REVIEW	21
	2.1	Overview	21
	2.2	Single-Carrier Modulation Format	24
		2.2.1 Pulse Amplitude Modulation (PAM)	25
		2.2.2 Quadrature Amplitude Modulation	
		(QAM)	26
	2.3	Carrierless Amplitude Phase (CAP)	29
		2.3.1 2D CAP	31
		2.3.2 High Dimensionality CAP	34
		2.3.3 Multi-band CAP (MultiCAP)	37
	2.4	Optical Source	39
	2.5	Vertical Cavity Surface Emitting Laser	
		(VCSEL)	41
		2.5.1 Rate Equation Model	43
		2.5.2 Small-Signal Modulation Response	46
		2.5.3 Thermal Effect	51
	2.6	Optical Fiber	56
	2.7	Variable Optical Attenuator (VOA)	60
	2.8	Photodetector	61
	2.9	Bit Error Rate (BER)	62
	2.10	Chapter Summary	63
CHAPTER 3	RESE	EARCH METHODOLOGY	65
	3.1	Overview	65
	3.2	Modelling of 2D CAP System	67
	3.3	Modelling of 3D CAP System	70
	3.4	2D CAP Transmission System Using	
		Optisystem	73
	3.5	2D CAP Transmission System Using VPI	
		Transmission Maker	74
		3.5.1 QAM-DMT Comparison for In-home	
		Network Environment	75

viii

		APPE	ENDICES	119
		REFE	ERENCES	107
		5.2	Recommendation for future work	105
		5.1	Conclusion	103
	CHAPTER 5	CON	CLUSION AND RECOMMENDATION	103
		4.7	Chapter Summary	102
			Network Model Validation	99
			4.6.2 3D CAP-VCSEL System for Access	
			Network Model Validation	96
			4.6.1 2D CAP-VCSEL System for Access	
		4.6	Output of CAP-VCSEL System Model	94
			Network Environment Results	92
			4.5.1 OAM-DMT Comparison for In-home	
		4.3	Model Using VPI Transmission Maker	91
		15	Output of 2D CAP Transmission System	89
		4.4	Output of 2D CAP Transmission System	80
		4.3	Output of 3D CAP System Model	87
		4.2	Output of 2D CAP System Model	85
		4.1	Overview	85
	CHAPTER 4	RESU	JLTS AND DISCUSSION	85
		3.7	Chapter Summary	84
			Network	83
			3.6.2 3D CAP-VCSEL System for Access	
			Network	83
			3.6.1 2D CAP-VCSEL System for Access	
		3.6	Modelling of CAP-VCSEL System	78

ix

LIST OF TABLES

2.1	Summarization of published CAP-VCSEL modulation	
	format.	53
3.1	2D and 3D CAP modulation parameters.	73
3.2	2D-CAP-4 and 4-QAM-DMT modulation parameters.	77
3.3	VCSEL rate equation parameters values.	81
3.4	Optical fiber parameters values.	82
3.5	Relationship of 2D-CAP-4.	83
3.6	Relationship of 3D-CAP-4.	84

LIST OF FIGURES

1.1	Bit rate-distance product, BL through technological	
	advances [3].	2
1.2	Electromagnetic spectrum [4].	2
1.3	Optical communication access and in-home network	
	from central office (CO) to customer premises	
	supported with wired and wireless network [6].	3
1.4	Data centers and access networks application scenarios	
	in high-speed optical transmission [4].	4
1.5	Block diagram of a WDM optical system using	
	external modulation [8].	6
1.6	Maximum bit rate versus POF length using FEC:	
	U: Unidirectional; B: Bidirectional [61].	12
1.7	Research K-Chart.	19
2.1	Optical transmission system.	21
2.2	Modulation schemes: (a) direct modulation and (b)	
	external modulator [87].	23
2.3	Digital bit stream coded by using return-to-zero (RZ)	
	and non-return-to-zero (NRZ) formats [88].	24
2.4	Functional diagram of a PAM transceiver [89].	26
2.5	QAM transceiver [90].	28
2.6	CAP transceiver [91].	30
2.7	2D CAP system [42].	32
2.8	3D or 4D CAP system [47].	36
2.9	Modulation and demodulation principles of multi-band	
	CAP [49].	38

2.10	Schematic of in-plane and VCSEL showing selected	
	coordinate systems [102].	41
2.11	VCSEL schematic layer structure [74].	42
2.12	VCSEL active region and cavity volume.	43
2.13	Small-signal modulation response $ H(v) ^2$ at different	
	bias currents [103].	50
3.1	Research methodology.	66
3.2	2D CAP system in electrical back-to-back (B2B).	67
3.3	2D CAP modulator.	68
3.4	2D CAP demodulator.	69
3.5	3D CAP system in electrical back-to-back (B2B).	70
3.6	3D CAP modulator.	70
3.7	3D CAP demodulator.	72
3.8	2D CAP modulation format in optical transmission	
	system.	74
3.9	CAP signal in optical transmission system using	
	integrated software.	74
3.10	2D CAP signal transmission at 1.25 Gbps and and 2.5	
	Gbps for access network environment.	75
3.11	CAP and QAM-DMT modulation format for in-home	
	network environment.	75
3.12	CAP transmission system.	76
3.13	DMT transmission system.	77
3.14	CAP-VCSEL transmission system.	78
4.1	Impulse response of the in-phase and quadrature filter.	86
4.2	2D CAP signal power spectrum.	86
4.3	Constellation diagram of 2D-CAP-4 and 2D-CAP-16	
	for electrical B2B.	87
4.4	Impulse responses of the 3D CAP filters.	87
4.5	Cross responses of the 3D CAP transceiver filters.	88
4.6	3D CAP signal power spectrum.	88
4.7	Constellation diagram of 3D-CAP-4 and 3D-CAP-16	
	for electrical B2B.	89

4.8	Constellation diagram for 2D-CAP-4: (a) optical back-	
	to-back (B2B), (b) after 5 km transmission, (c) after 10	
	km transmission, (d) after 20 km transmission, (e) after	
	30 km transmission, and (f) after 35 km transmission.	90
4.9	Constellation diagram for 2D-CAP-16: (a) optical	
	back-to-back (B2B), (b) after 5 km transmission, (c)	
	after 10 km transmission, (d) after 20 km transmission,	
	(e) after 30 km transmission, and (f) after 35 km	
	transmission.	90
4.10	Bit error rate (BER) against received optical power	
	(ROP) of 2D-CAP-4 at 1.25 Gbps and 2.5 Gbps.	91
4.11	Signal spectrum: (a) CAP, and (b) DMT.	92
4.12	BER versus ROP for 2D-CAP-4 and 4-QAM-DMT.	93
4.13	VCSEL optical signal output power.	94
4.14	Injection current.	94
4.15	Optical fiber output.	95
4.16	Normalized power spectrum of detected CAP signal.	95
4.17	BER curves for 2D-CAP-4.	96
4.18	Constellation diagram for 2D-CAP-4: a) electrical	
	B2B, b) optical B2B, and c) after 20 km SMF	
	transmission.	97
4.19	Bit error rate (BER) versus received optical power	
	(ROP) for 2D-ODMA 2-L/D [33].	97
4.20	BER curves comparison between simulation and	
	previous experimental work for 2D-CAP-4.	98
4.21	BER curves for 3D-CAP-4.	99
4.22	Constellation diagram for 3D-CAP-4: a) electrical	
	B2B, and b) after 20 km SMF transmission.	100
4.23	Bit error rate (BER) versus received optical power	
	(ROP) for 3D CAP at 2L/D [47].	100
4.24	BER curves comparison between simulation and	
	previous experimental work for 3D-CAP-4.	101

LIST OF SYMBOLS AND ABBREVIATIONS

А	-	non-radiative surface or linear recombination
		coefficient
A _a	-	active area
A _{eff}	-	effective area of fiber evaluated as the area of the
		guided mode
α	-	attenuation of fiber
В	-	radiative bimolecular recombination coefficient
β	-	propagation constant of fiber
β_2	-	second-order differentiation of the propagation
		constant-group velocity dispersion (GVD)
β_3	-	third-order differentiation of the propagation constant-
		dispersion slope
$eta_{ m sp}$	-	spontaneous emission factor
C		Auger recombination coefficient
CDUS	51	velocity of light in vacuum
D	-	dispersion factor (unit = ps/nm/km)
D_M	-	material dispersion
D_W	-	waveguide dispersion
d_a	-	total thickness of the active layers
Е	-	gain compression factor
F_N	-	Langevin forces for the electron density
F_{Np}	-	Langevin forces for the photon density
f	-	frequency
<i>f</i> _c	-	carrier frequency
g	-	material gain
g_p	-	peak gain coefficient

h	-	Plank's constant ($h = 6.626 \times 10^{-34}$ Js)
Ι	-	injection current
I _d	-	dark current of photodetector
I_p	-	photocurrent
I_s	-	shot noise current of photodetector
$k_{\rm B}$	-	Boltzmann's constant ($k_{\rm B}$ =1.38×10 ⁻²³ J/K)
L	-	length of optical fiber
М	-	number of symbols
Ν	-	carrier (electron or hole) density
N_p	-	photon density
N_t	-	transparency carrier density
η	-	quantum efficiency
η_e	-	extinction efficiency of the optical signal
η_i	-	current injection efficiency
η_o	-	optical efficiency
Р	-	optical power
Pout	-	power of the optical signal out of the laser
P _{in}	-	incident optical power
q	-	electron charge ($q = 1.6 \times 10^{-19}$ C)
R	57	responsivity of the photodetector
R _s	-	series resistance
R _{th}	-	device thermal impedance
ξ	-	thermal conductivity of the material
Т	-	symbol period
T _o	-	ambience temperature
T_s	-	symbol interval
$ au_{ m p}$	-	photon lifetime
$ au_{ m sp}$	-	spontaneous recombination lifetime
$ au_{ m sp,n}$	-	non-radiative lifetime
$ au_{ m sp,r}$	-	radiative lifetime
$ au_{th}$	-	thermal time constant
Г	-	confinement factor

xv

Γ_r	-	relative confinement factor
V_a	-	active volume
V_d	-	current-independent series voltage
V_p	-	volume of the laser cavity
V_{s}	-	ideal diode voltage
ν	-	modulation frequency
v_r	-	resonance frequency
v_{gr}	-	group velocity
W	-	minimum bandwidth
γ	-	damping coefficient
ADC	-	analog to digital converter
ADSL	-	asymmetric digital subscriber line
AM	-	amplitude modulation
APD	-	avalanche photodiode
ASE	-	amplified spontaneous emission
ASK	-	amplitude shift keying
ATM	-	asynchronous transfer mode
AWGN	-	additive white Gaussian noise
B2B	-	back-to-back
BER	-	bit error rate
BPSK	5	binary phase shift keying
BS	-	base station
CAP	-	carrierless amplitude phase
CAP-	-	carrierless amplitude phase-vertical cavity surface
VCSEL		emitting laser
CCI	-	channel crosstalk
CD	-	chromatic dispersion
CDMA	-	code division multiple access
CMMA	-	cascaded multi-modulus algorithm
CO	-	central office
СР	-	cyclic prefix
CS	-	central site/station
CSRZ	-	carrier-suppressed return-to-zero

	xvii
continuous wave	
coarse wavelength division multiplexing	
differential 8-ary phase shift keying	
digital to analog converter	
distributed Bragg reflector	
direct current	

DAC	-	digital to analog converter
DBR	-	distributed Bragg reflector
DC	-	direct current
DCDM	-	duty cycle division multiplexing
DD-LMS	-	decision-directed least mean square
DEMUX	-	demultiplexer
DFB	-	distributed feedback
DFE	-	decision feedback equalization
DFT	-	discrete Fourier transform
DL	-	delay line
DML	-	direct modulation laser
DMT	-	discrete multitone
DM-	-	directly modulated vertical cavity surface emitting laser
VCSEL		
DPSK	-	differential phase shift keying
DQPSK	-	differential quadrature phase shift keying
DSG	-	digital signal generator
DSL	5-7	digital subscriber line
DSP	-	digital signal processing
DWDM	-	dense wavelength division multiplexing
EA	-	electro-absorption
EDFA	-	Erbium-doped fiber amplifier
EDGE	-	enhanced data GSM environment
EEL	-	edge emitting laser
ETDM	-	electronic time division multiplexing
EV-DO	-	evolution-data optimized
FDC	-	fiber distribution cabinet
FDM	-	frequency division multiplexing
		filmen distuilention maint

fiber distribution point FDP _

forward error correction FEC _

CW

CWDM

D8PSK

-

-

-

FFE	-	feed forward equalization
FFT	-	fast Fourier transform
FIR	-	finite impulse response
FM	-	frequency modulation
FPGA	-	field programmable gate array
FSK	-	frequency shift keying
FTB	-	fiber termination box
FTTH	-	fiber to the home
FWM	-	four wave mixing
FWS	-	fiber wall socket
GPRS	-	general packet radio services
GSM	-	global system for mobiles
GVD	-	group velocity dispersion
HMB	-	hybrid multi-band
HSDPA	-	high-speed downlink packet access
HSPA	-	high-speed packet access
HSUPA	-	high-speed uplink packet access
IC	-	integrated circuit
IQ	-	in-phase quadrature
IEEE	-	Institute of Electrical and Electronics Engineers
IFFT	5-7	inverse fast Fourier transform
IM/DD	-	intensity modulation and direct detection
IoT	-	Internet of Things
IS-95	-	interim standard-95
ISI	-	intersymbol interference
ITU	-	International Telecommunications Union
LAN	-	local area networks
LD	-	laser diode
LED	-	light emitting diode
LO	-	local oscillator
LRM	-	long reach multimode
LTE-A	-	long term evolution-advanced
L/D	-	levels per dimension

M-PAM	-	<i>M</i> -ary pulse amplitude modulation
M-PSK	-	<i>M</i> -ary phase shift keying
M-QAM	-	<i>M</i> -ary quadrature amplitude modulation
MMF	-	multimode fiber
MM-	-	multimode vertical cavity surface emitting laser
VCSEL		
MUX	-	multiplexer
MZI	-	Mach-Zehnder interferometer
MZM	-	Mach-Zehnder modulator
NA	-	numerical aperture
NGAN	-	next generation access networks
NLSE	-	nonlinear Schröedinger equation
NRZ	-	non-return-to-zero
NRZ-	-	non-return to zero-time division multiplexing
TDM		
NZDSF	-	nonzero dispersion-shifted fiber
OA	-	optimization algorithm
OCS	-	optical carrier suppression
OCS-	-	optical carrier suppressed-optical differential phase-
oDPSK		shift keying
ODMA	57	orthogonal division multiple access
OFDM	-	orthogonal frequency division multiplexing
OFM	-	optical frequency multiplication
ONU	-	optical network unit
OOFDM	-	optical orthogonal frequency division multiplexing
OOK	-	on-off keying
OSSB	-	optical single-side band
OTDM	-	optical time division multiplexing
PAM	-	pulse amplitude modulation
PAPR	-	peak to average power ratio
PCM	-	pulse code modulation
PD	-	photodetector/photodiode
PDM	-	polarization division multiplexing

PIC	-	photonic integrated circuit
PIN	-	<i>p</i> -intrinsic- <i>n</i>
PLL	-	phase-locked loop
PM	-	phase modulation
POF	-	plastic/polymer optical fiber
PON	-	passive optical network
PR	-	perfect reconstruction
PRBS	-	pseudo-random bit sequence
PSK	-	phase shift keying
QAM	-	quadrature amplitude modulation
QPSK	-	quadrature phase shift keying
QW	-	quantum well
RAU	-	remote antenna unit
RF	-	radio frequency
RHD	-	remote heterodyne detection
RIN	-	relative intensity noise
RMS	-	root-mean-square
RoF	-	radio over fiber
ROP	-	received optical power
RRC	-	root raised cosine
RTI	57	real-time implementation
RZ	-	return-to-zero
SCM	-	subcarrier multiplexing
SDM	-	space division multiplexing
SE	-	spectral efficiency
SI-POF	-	step index polymer optical fibers
SM	-	spatial modulation
SMF	-	single mode fiber
SM-	-	single mode vertical cavity surface emitting laser
VCSEL		
SNR	-	signal-to-noise ratio
SPM	-	self-phase modulation
SRRC	-	square-root raised-cosine

SSB	-	single-side band
SSFM	-	split-step Fourier method
SSMF	-	standard single mode fiber
STBC	-	space-time block-coded
TDM	-	time division multiplexing
UMTS	-	universal mobile telecommunications system
VCSEL	-	vertical cavity surface emitting laser
VLC	-	visible light communication
VOA	-	variable optical attenuator
WDM	-	wavelength division multiplexing
Wi-Fi	-	wireless fidelity
WLAN	-	wireless local area network
WSN	-	wireless sensor networks
XPM	-	cross-phase modulation

LIST OF APPENDICES

APPENDIX	TITLE	
А	LIST OF PUBLICATIONS	119
В	VITA	121

CHAPTER 1

INTRODUCTION

1.1 Overview

The ever-increasing demand for high bandwidth capacity and high bit rate has revolutionized telecommunication-related technologies in general, most notably over the last few decades. Unlike before, users nowadays are always keen on fast internet communication, video-based multimedia, fast peer-to-peer file transfer, highdefinition video streaming, online gaming, and many more. In addition, technological advancement in the telecommunication field allows for systems such as the Internet of Things (IoT) to become an inseparable component of modern living for most people. The tedious and repetitive tasks become much simpler and more organized via automatic actions and allow users to remotely monitor and manage their devices with an IoT system. However, the constant need for high-speed data rate put tremendous stress on the telecommunication system infrastructure in providing high-capacity link that can fulfil the wide IoT service requirements [1].

In order to ensure the telecommunication system infrastructure can support the high data capacity and rate that is typically required for the access network environment, the information transmission process should be continuous and perform extremely well. Conventional telecommunication access network infrastructures like twisted-pair telephony networks and coaxial cable networks seem to be having a difficult time dealing with traffic services issues. Due to the alarming network traffic issues, it has basically driven the migration of today's network access from conventional cable to optical fiber and broadband wireless systems [2]. Even though wireless communication provides seamless mobility, better security as well as reliability provided by optical fiber makes communication via wired lines preferable.

Generally, in communication systems, a by-product of bit rate–and-distance, BL, where B is the bit rate and L is the spacing of repeater, is commonly used to depict communication evolution. As shown in Figure 1.1, the BL product increased during the period of the emergence of new technologies, as marked by the red squares. As can be seen in the figure, telegraph technology has the least BL product whereas space-division multiplexing (SDM) has the most BL product associated with it. The notable increase in BL products occurs from around 1980 onward, when optical fibers technology was first introduced, thus marking the beginning of the usage of optical waves as the carrier. Optical communication systems employ high frequencies (~ 200 THz) in the near-infrared region of the electromagnetic spectrum, also called lightwave, as shown in Figure 1.2. Since lightwave systems used high carrier frequencies, the information capacity of optical communication systems is expected to be increased significantly.

Figure 1.1: Bit rate-distance product, BL through technological advances [3].

Figure 1.2: Electromagnetic spectrum [4].

Over the last few decades, fiber-optic communication technology and the corresponding network architectures and components, as well as groundbreaking communication system ideas are rapidly evolving. This also indirectly indicates that extensive research work in optical fiber communications and integrated optical electronics have taken place [5]. The optical fiber properties such as considerably large inherent bandwidth and low power loss make it a favorable option for highspeed and long-distance communication. Optical fiber provides the backbone of the broadband internet worldwide, conquers, and progressively becomes part of the access and in-home networks as depicted in Figure 1.3. The rapid deployment of optical fiber to the home (FTTH) and other access technologies promises the potential to deliver higher data rates to customer's homes. With rising demand for digital broadband communication, the optical communication network infrastructure is required to surpass certain characteristics in terms of bandwidth capacity, service subscribers, current fiber infrastructure, geographical layout, vendor requirements, AMIN available services and most of all, access methods for successful operation with wide connectivity.

Figure 1.3: Optical communication access and in-home network from central office (CO) to customer premises supported with wired and wireless network [6].

REFERENCES

- A. Caballero, "High Capacity Radio over Fiber Transmission Links," Ph.D. Thesis, Technical University of Denmark, 2011.
- [2] J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, and M. F. Huang, "Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems," *Journal of Lightwave Technology*, vol. 28, no. 16, pp. 2376–2397, 2010, doi: 10.1109/JLT.2010.2041748.
- [3] G. P. Agrawal, Fiber-Optic Communication Systems, Fifth. Wiley, 2021.
- [4] J. Yu and N. Chi, Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application. Springer, 2020. doi: 10.1007/978-981-15-3098-2.
- [5] I. P. Kaminow, "Optical Integrated Circuits: A Personal Perspective," *Journal of Lightwave Technology*, vol. 26, no. 9, pp. 994–1004, 2008, doi: 10.1109/JLT.2008.922149.
- [6] Jim Hayes, The Fiber Optic Association Fiber To The Home Handbook: For Planners, Managers, Designers, Installers And Operators Of FTTH - Fiber To The Home - Networks, vol. 5. Amazon Digital Services LLC, 2021.
- T.H. Maiman, "Stimulated Optical Radiation in Ruby," *Nature*, vol. 187, pp. 493–494, 1960, doi: https://doi.org/10.1038/187493a0.
- [8] R. Hui, Introduction to Fiber-Optic Communications. Academic Press Elsevier, 2020.
- [9] K. Sheng *et al.*, "A 4.6-pJ/b 200-Gb/s Analog DP-QPSK Coherent Optical Receiver in 28-nm CMOS," *IEEE J Solid-State Circuits*, vol. 58, no. 1, pp. 45–56, 2023, doi: 10.1109/JSSC.2022.3211347.
- [10] M. Pelusi, T. Inoue, and S. Namiki, "Brillouin Amplifier Noise Characterization by a Coherent Receiver and Digital Signal Processing,"

Journal of Lightwave Technology, vol. 38, no. 16, pp. 4221–4236, 2020, doi: 10.1109/JLT.2020.2987644.

- [11] L. Jiang *et al.*, "Chromatic Dispersion, Nonlinear Parameter, and Modulation Format Monitoring Based on Godard's Error for Coherent Optical Transmission Systems," *IEEE Photonics J*, vol. 10, no. 1, 2018, doi: 10.1109/JPHOT.2017.2786697.
- [12] C. W. Peng *et al.*, "DP-QPSK Coherent Detection Using 2D Grating Coupled Silicon Based Receiver," *IEEE Photonics J*, vol. 13, no. 1, 2021, doi: 10.1109/JPHOT.2020.3043592.
- J. Zhang, Z. Jia, M. Xu, H. Zhang, and L. A. Campos, "Efficient preamble design and digital signal processing in upstream burst-mode detection of 100G TDM coherent-PON," *Journal of Optical Communications and Networking*, vol. 13, no. 2, pp. A135–A143, 2021, doi: 10.1364/JOCN.402591.
- S. T. Le *et al.*, "1.72-Tb/s Virtual-Carrier-Assisted Direct-Detection Transmission over 200 km," *Journal of Lightwave Technology*, vol. 36, no. 6, pp. 1347–1353, Mar. 2018, doi: 10.1109/JLT.2017.2779331.
- [15] A. Josten, B. Baeuerle, B. I. Bitachon, G. Stalder, D. Hillerkuss, and J. Leuthold, "400G probabilistic shaped PDM-64QAM synchronization in the frequency domain," *IEEE Photonics Technology Letters*, vol. 31, no. 9, pp. 697–700, May 2019, doi: 10.1109/LPT.2019.2904671.
- [16] P. Li, R. Xu, Z. Dai, Z. Lu, L. Yan, and J. Yao, "A High Spectral Efficiency Radio over Fiber Link Based on Coherent Detection and Digital Phase Noise Cancellation," *Journal of Lightwave Technology*, vol. 39, no. 20, pp. 6443– 6449, Oct. 2021, doi: 10.1109/JLT.2021.3104466.
- [17] P. Li, Z. Dai, L. Yan, and J. Yao, "A Microwave Photonic Link With Quadrupled Capacity Based on Coherent Detection and Digital Phase Noise Cancellation," *Journal of Lightwave Technology*, vol. 40, no. 20, pp. 6845– 6851, Oct. 2022, doi: 10.1109/JLT.2022.3171627.
- [18] A. J. Lowery and T. Feleppa, "Analog low-latency kramers-kronig optical single-sideband receiver," *Journal of Lightwave Technology*, vol. 39, no. 10, pp. 3130–3136, May 2021, doi: 10.1109/JLT.2021.3060062.
- [19] X. Zhou, R. Urata, and H. Liu, "Beyond 1 Tb/s Intra-Data Center Interconnect Technology: IM-DD or Coherent?," *Journal of Lightwave Technology*, vol. 38, no. 2, pp. 475–484, Jan. 2020, doi: 10.1109/JLT.2019.2956779.

- [20] L. Gonzalez-Guerrero *et al.*, "Comparison of Optical Single Sideband Techniques for THz-Over-Fiber Systems," *IEEE Trans Terahertz Sci Technol*, vol. 9, no. 1, pp. 98–105, 2019, doi: 10.1109/TTHZ.2018.2884736.
- [21] T. Hirokawa *et al.*, "Analog Coherent Detection for Energy Efficient Intra-Data Center Links at 200 Gbps per Wavelength," *Journal of Lightwave Technology*, vol. 39, no. 2, pp. 520–531, Jan. 2021, doi: 10.1109/JLT.2020.3029788.
- [22] Y. Yoffe, E. Wohlgemuth, and D. Sadot, "Low-resolution digital precompensation for high-speed optical links based on dynamic digital-to-analog conversion," *Journal of Lightwave Technology*, vol. 37, no. 3, pp. 882–888, Feb. 2019, doi: 10.1109/JLT.2018.2882834.
- [23] G. Zhou, L. Sun, C. Lu, and A. P. T. Lau, "Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform," *Journal of Lightwave Technology*, vol. 39, no. 17, pp. 5459–5467, Sep. 2021, doi: 10.1109/JLT.2021.3084825.
- [24] R. H. Nejad, M. Banawan, and L. A. Rusch, "OAM Mode Selection for High-Speed Optical Communications: A Bit Loading Approach," *Journal of Lightwave Technology*, vol. 40, no. 16, pp. 5376–5384, Aug. 2022, doi: 10.1109/JLT.2022.3181521.
- [25] P. Li, Z. Dai, L. Yan, and J. Yao, "Radio over Fiber Links with Increased Spectral Efficiency Based on Coherent Detection and Digital Processing," in 2021 International Topical Meeting on Microwave Photonics, MWP 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/MWP53341.2021.9639386.
- [26] M. S. Faruk, D. J. Ives, and S. J. Savory, "Technology Requirements for an Alamouti-Coded 100 Gb/s Digital Coherent Receiver Using 3 × 3 Couplers for Passive Optical Networks," *IEEE Photonics J*, vol. 10, no. 1, Feb. 2018, doi: 10.1109/JPHOT.2017.2788191.
- [27] Q. Zhang, Y. Yang, C. Gu, Y. Yao, A. P. T. Lau, and C. Lu, "Multi-Dimensional, Wide-Range, and Modulation-Format-Transparent Transceiver Imbalance Monitoring," *Journal of Lightwave Technology*, vol. 39, no. 7, pp. 2033–2045, Apr. 2021, doi: 10.1109/JLT.2020.3045326.

- [28] L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, "Advanced Modulation Formats for Short Reach Optical Communication Systems," *IEEE Netw*, vol. 27, no. 6, pp. 6–13, 2013, doi: 10.1109/MNET.2013.6678921.
- [29] P. J. Winzer and R.-J. Essiambre, "Advanced Optical Modulation Formats," in *Proceedings of the IEEE*, 2006, pp. 952–985. doi: 10.1109/JPROC.2006.873438.
- [30] T. Tokle, M. Serbay, J. B. Jensen, W. Rosenkranz, and P. Jeppesen, "Advanced Modulation Formats for Transmission Systems," in *Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC)*, 2008. doi: 10.1109/OFC.2008.4528340.
- [31] A. F. Shalash and K. K. Parhi, "Multidimensional Carrierless AM/PM Digital Subscriber Loops," IEEE Systems for **Transactions** on Communications, vol. 47, no. 11, 1655-1667, 1999. doi: pp. 10.1109/26.803500.
- [32] A. Caballero, T. T. Pham, J. B. Jensen, and I. T. Monroy, "Carrierless N-Dimensional Modulation Format for Multiple Service Differentiation in Optical In-home Networks," in *IEEE Photonic Conference (IPO)*, 2011. doi: 10.1109/PHO.2011.6110545.
- [33] M. B. Othman, X. Zhang, J. B. Jensen, and I. T. Monroy, "Using CAP Dimensionality for Service and User Allocation for Optical Access Networks," in Asia Communications and Photonics Conference (ACP), 2012.
- [34] D.D. Falconer, "Carrierless AM/PM," *Bell Laboratories Technical Memorandum*, 1975.
- [35] J. J. Werner, "Tutorial on Carrierless AM/PM-Part I: Fundamentals of Digital CAP Transmitter," AT&T Contribution to ANSI X3T9.5 TP/PMD, 1992.
- [36] J. J. Werner, "Tutorial on Carrierless AM/PM-Part II: Performance of Bandwidth Efficient Line Codes," AT&T Contribution to ANSI X3T9.5 TP/PMD, 1993.
- [37] G. H. Im, D. D. Harman, G. Huang, A. v. Mandzik, M. H. Nguyen, and J. J. Werner, "51.84 Mb/s 16-CAP ATM LAN Standard," *IEEE Journal on Selected Areas in Communications*, vol. 13, no. 4, pp. 620–632, 1995, doi: 10.1109/49.382153.
- [38] J. Gao and Y. H. Leung, "A New Adaptive Equalizer for Carrierless Amplitude and Phase (CAP) Receivers," in *Proceedings of the 1999 IEEE*

International Symposium on Circuits and Systems VLSI, 1999, pp. 90–93. doi: 10.1109/ISCAS.1999.778792.

- [39] International Telecommunication Union (ITU), "G.992.1 Asymmetric digital subscriber line (ADSL) transceivers," 1999.
- [40] T. Collins, Carrierless Amplitude Phase Modulation, Handbook of Computer Networks: Key Concepts, Data Transmission, and Digital and Optical Networks. John Wiley and Sons, 2008.
- [41] A. Shalash and K. K. Parhi, "Comparison of Discrete Multitone and Carrierless AM/PM Techniques for Line Equalization," in *IEEE International Symposium on Circuits and Systems ISCAS 96*, 1996, pp. 560–563. doi: 10.1109/ISCAS.1996.541786.
- [42] M. B. Othman, T. T. Pham, X. Zhang, L. Deng, J. B. Jensen, and I. T. Monroy, "Comparison of Carrierless Amplitude-Phase (CAP) and Discrete Multitone (DMT) Modulation," in *IEEE 5th International Conference on Photonics (ICP)*, 2014, pp. 214–216.
- [43] J. D. Ingham, R. v. Penty, I. H. White, and D. G. Cunningham, "Carrierless Amplitude and Phase Modulation for Low-Cost, High-Spectral-Efficiency Optical Datacommunication Links," in *Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference* (QELS), 2010.
- [44] J. D. Ingham, R. v. Penty, I. H. White, and D. G. Cunningham, "40 Gb/s Carrierless Amplitude and Phase Modulation for Low-Cost Optical Datacommunication Links," in *Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC)*, 2011. doi: 10.1364/OFC.2011.OThZ3.
- [45] I. Thng, X. Li, and C. C. Ko, "A New 3D CAP System," in *IEEE Region 10 Conference (TENCON)*, 1999, pp. 309–312.
- [46] X. Tang, I. L. J. Thng, and X. Li, "A New Digital Approach to Design 3-D CAP Waveforms," *IEEE Transactions on Communications*, vol. 51, no. 1, pp. 12–16, 2003, doi: 10.1109/TCOMM.2002.807608.
- [47] M. B. Othman, X. Zhang, L. Deng, M. Wieckowski, J. B. Jensen, and I. T. Monroy, "Experimental Investigations of 3-D-/4-D-CAP Modulation with Directly Modulated VCSELs," *IEEE Photonics Technology Letters*, vol. 24, no. 22, pp. 2009–2012, 2012, doi: 10.1109/LPT.2012.2217811.

- [48] M. I. Olmedo, Z. Tianjian, J. B. Jensen, Z. Qiwen, and X. Xiaogeng, "Towards 400GBASE 4-lane Solution Using Direct Detection of MultiCAP Signal in 14 GHz Bandwidth per Lane," in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), 2013.
- [49] M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, and X. Xu, "Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links," *Journal of Lightwave Technology*, vol. 32, no. 4, pp. 798–804, 2014, doi: 10.1109/JLT.2013.2284926.
- [50] F.-M. Wu, C. Lin, C. Wei, C. Chen, H.-T. Huang, and C.-H. Ho, "1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation," *IEEE Photonics Technology Letters*, vol. 24, no. 19, pp. 1730–1732, 2012, doi: 10.1109/LPT.2012.2210540.
- [51] S. Long, M. A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, "Performance of Carrier-less Amplitude and Phase Modulation with Frequency Domain Equalization for Indoor Visible Light Communications," in 4th International Workshop on Optical Wireless Communications (IWOW), IEEE, 2015, pp. 16–20. doi: 10.1109/IWOW.2015.7342257.
- [52] F. M. Wu *et al.*, "Performance Comparison of OFDM signal and CAP Signal over High Capacity RGB-LED-based WDM Visible Light Communication," *IEEE Photonics J*, vol. 5, no. 4, 2013, doi: 10.1109/JPHOT.2013.2271637.
- [53] K. Enhos, E. Demirors, D. Unal, and T. Melodia, "Modeling and Optimization of Visible Light Carrierless Amplitude and Phase Modulation Links," in *IEEE International Conference on Communications*, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 595–600. doi: 10.1109/ICC45855.2022.9838298.
- [54] R. Le Priol, M. Helard, S. Haese, and S. Roy, "Experimental Comparison of PAM and CAP Modulation for Visible Light Communication Under Illumination Constraints," *IEEE Photonics J*, vol. 14, no. 2, Apr. 2022, doi: 10.1109/JPHOT.2022.3148467.
- [55] J. Chen, J. Shi, J. Hu, C. Shen, and N. Chi, "DC-Balanced Even-Dimensional CAP Modulation for Visible Light Communication," *Journal of Lightwave Technology*, vol. 40, no. 15, pp. 5041–5051, Aug. 2022, doi: 10.1109/JLT.2022.3174551.

- [56] W. M. Ahmed, O. A. M. Aly, and E. E. M. Khaled, "Performance Analysis and Comparative Studies of Carrierless Amplitude and Phase Modulation for Visible Light Communication," Institute of Electrical and Electronics Engineers (IEEE), Jun. 2023, pp. 272–279. doi: 10.1109/nrsc58893.2023.10153033.
- [57] M. Yu, C. T. Geldard, and W. O. Popoola, "Comparison of CAP and OFDM Modulation for LED-based Underwater Optical Wireless Communications," in 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications, CoBCom 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/CoBCom55489.2022.9880712.
- [58] M. Wieckowski, J. B. Jensen, I. T. Monroy, J. Siuzdak, and J. P. Turkiewicz, "300 Mbps Transmission with 4.6 bit/s/Hz Spectral Efficiency over 50 m PMMA POF Link Using RC-LED and Multilevel Carrierless Amplitude Phase Modulation," in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), 2011. doi: 10.1364/NFOEC.2011.NTuB8.
- [59] S. C. J. Lee, F. Breyer, S. Randel, O. Ziemann, H. P. A. van den Boom, and A. M. J. Koonen, "Low-cost and Robust 1-Gbit/s Plastic Optical Fiber Link Based on Light-Emitting Diode Technology," in *Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC)*, 2008, pp. 25–27. doi: 10.1109/OFC.2008.4528667.
- [60] J. L. Wei, L. Geng, D. G. Cunningham, R. v. Penty, and I. H. White, "Comparisons Between Gigabit NRZ, CAP and Optical OFDM Systems over FEC Enhanced POF Links Using LEDs," in *International Conference on Transparent Optical Networks*, 2012. doi: 10.1109/ICTON.2012.6253810.
- [61] J. L. Wei, L. Geng, D. G. Cunningham, R. v. Penty, and I. H. White, "Gigabit NRZ, CAP and Optical OFDM Systems over POF Links Using LEDs," *Opt Express*, vol. 20, no. 20, pp. 22284–22289, 2012, doi: 10.1109/ICTON.2012.6253810.
- [62] G. Stepniak, L. Maksymiuk, and J. Siuzdak, "Experimental Comparison of PAM, CAP, and DMT Modulations in Phosphorescent White LED Transmission Link," *IEEE Photonics J*, vol. 7, no. 3, pp. 1–8, 2015, doi: 10.1109/JPHOT.2015.2427092.

- [63] A. Dochhan, "Solutions for 400 Gbit/s Inter Data Center WDM Transmission," in *European Conference on Optical Communication (ECOC)*, 2016, pp. 680–682.
- [64] K. Zhong, X. Zhou, T. Gui, L. Tao, and Y. Gao, "Experimental Study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems," *Opt Express*, vol. 23, no. 2, pp. 1176–1189, 2015, doi: 10.1364/oe.23.001176.
- [65] R. Puerta, M. Agustin, L. Chorchos, J. Tonski, and J. R. Kropp, "Effective 100 Gb/s IM/DD 850-nm Multi- and Single-Mode VCSEL Transmission Through OM4 MMF," *Journal of Lightwave Technology*, vol. 35, no. 3, pp. 423–429, 2017, doi: 10.1109/JLT.2016.2625799.
- [66] X. Lu, D. Zibar, and I. T. Monroy, "24-Dimensional Rate-Flexible Carrierless and Amplitude Phase Modulation for 100G IM-DD Transmission Using 850nm VCSEL," in *European Conference on Optical Communication* (ECOC), 2018, pp. 8–10. doi: 10.1109/ECOC.2018.8535573.
- [67] K. Xu, L. Sun, Y. Xie, Q. Song, J. Du, and Z. He, "Transmission of IM/DD Signals at 2 μm Wavelength Using PAM and CAP," *IEEE Photonics J*, vol. 8, no. 5, 2016, doi: 10.1109/JPHOT.2016.2602080.
- [68] J. C. Rasmussen, T. Takahara, T. Tanaka, Y. Kai, and M. Nishihara, "Digital Signal Processing for Short Reach Optical Links," in *European Conference on Optical Communication (ECOC)*, 2014, pp. 18–20. doi: 10.1109/ECOC.2014.6964246.
- [69] R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, and I. T. Monroy, "VCSEL-based DWDM PON with 4 bit/s/Hz Spectral Efficiency Using Carrierless Amplitude Phase Modulation," in *European Conference and Exposition on Optical Communication (ECOC)*, 2011. doi: 10.1364/ECOC.2011.Mo.2.C.2.
- [70] H. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices. Springer, 2002.
- [71] K. Iga, "Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution," *Journal Applied Physics*, vol. 47, pp. 1–10, 2008.
- [72] M. J. Li *et al.*, "Single-Mode VCSEL Transmission for Short Reach Communications," *Journal of Lightwave Technology*, vol. 39, no. 4, pp. 868– 880, Feb. 2021, doi: 10.1109/JLT.2020.3028972.

- [73] N. Ledentsov, Ł. Chorchos, V. A. Shchukin, V. P. Kalosha, J. P. Turkiewicz, and N. N. Ledentsov, "Development of VCSELs and VCSEL-based Links for Data Communication beyond 50Gb/s," 2020.
- [74] Rainer Michalzik, VCSEL Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, vol. 166. Springer, 2013. doi: 10.1002/9781119782223.ch2.
- [75] Chang-Hasnain and Connie J, "Tunable VCSEL," *IEEE Journal on Selected Topics in Quantum Electronics*, vol. 6, no. 6, pp. 978–987, 2000.
- [76] M. P. Tan, "Modulation Approaches Of Vertical-Cavity Surface-Emitting Lasers with Mode Control," Ph.D. Thesis, University of Illionis, 2013.
- [77] J. A. Altabas, D. Izquierdo, J. Clemente, S. Sarmiento, and G. S. Valdecasa, "Advanced Technologies for Coherent Access Networks," in *International Conference on Transparent Optical Networks*, 2019, pp. 4–8. doi: 10.1109/ICTON.2019.8840371.
- [78] M. C. Amann, E. Wong, and M. Müller, "Energy-Efficient High-Speed Short-Cavity VCSELs," in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), 2012.
- [79] M. Muller, W. Hofmann, T. Grundl, M. Horn, and P. Wolf, "1550-nm High-Speed Short-Cavity VCSELs," *IEEE Journal on Selected Topics in Quantum Electronics*, vol. 17, no. 5, pp. 1158–1166, 2011.
- [80] Y. Rao, C. Chase, M. C. Y. Huang, S. Khaleghi, and M. R. Chitgarha, "Continuous Tunable 1550-nm High Contrast Grating VCSEL," in *CLEO: Applications and Technology*, 2012, pp. 14–15. doi: 10.1364/cleo_si.2012.cth5c.3.
- [81] R. Rodes, J. Estaran, B. Li, M. Muller, and J. B. Jensen, "100 Gb/s Single VCSEL Data Transmission Link," in *Optics InfoBase Conference Papers*, 2012, pp. 10–12. doi: 10.1364/ofc.2012.pdp5d.10.
- [82] R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, and J. Turkiewicz, "Carrierless Amplitude Phase Modulation of VCSEL with 4 bit/s/Hz Spectral Efficiency for Use in WDM-PON," *Opt Express*, vol. 19, no. 27, pp. 26551– 26556, 2011, doi: 10.1364/OE.19.026551.
- [83] M. B. Jaafar, M. B. Othman, N. M. Ridzuan, M. F. L. Abdullah, R. Mohamad, and T. Kanesan, "Simulation of High Dimensionality Carrierless Amplitude

Phase (CAP) Modulation Technique," in *IEEE 6th International Conference* on *Photonics (ICP)*, 2016, pp. 6–8. doi: 10.1109/ICP.2016.7510003.

- [84] R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, and J. Kropp, "107.5 Gb/s 850 nm Multi- and Single-mode VCSEL Transmission over 10 and 100 m of Multi-mode Fiber," in *Optical Fiber Communication (OFC)*, 2016, pp. 10–12.
- [85] R. Puerta, J. J. Vegas Olmos, I. Tafur Monroy, N. N. Ledentsov, and J. P. Turkiewicz, "Flexible MultiCAP Modulation and its Application to 850 nm VCSEL-MMF Links," *Journal of Lightwave Technology*, vol. 35, no. 15, pp. 3168–3173, 2017, doi: 10.1109/JLT.2017.2701887.
- [86] N. Bamiedakis, X. Dong, D. G. Cunningham, R. v. Penty, and I. H. White, "A New Equalizer Structure for High-Speed Optical Links Based on Carrierless Amplitude and Phase Modulation," in *International Conference on Transparent Optical Networks*, 2020, pp. 1–7. doi: 10.1109/ICTON51198.2020.9203479.
- [87] L. N. Binh, Optical Modulation Advanced Techniques and Applications in Transmission Systems and Networks, vol. 1. CRC Press, 2018. doi: 10.1007/978-3-540-79567-4_1.3.1.
- [88] R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks A Practical Perspective, vol. 148. Elsevier, 2010.
- [89] P. Golden, H. Dedieu, and K. Jacobsen, *Fundamentals of DSL Technology*. Aurbech Publications, 2005. doi: 10.4324/9780203317495.
- [90] M. Soudan, R. Farrell, and L. Barrandon, "On Time-interleaved Analog-to-Digital Converters for Digital Transceivers," in *IEEE International Symposium on Circuits and Systems*, 2009, pp. 980–983. doi: 10.1109/ISCAS.2009.5117922.
- [91] K. O. Akande, P. A. Haigh, and W. O. Popoola, "On the Implementation of Carrierless Amplitude and Phase Modulation in Visible Light Communication," *IEEE Access*, vol. 6, pp. 60532–60546, 2018, doi: 10.1109/ACCESS.2018.2876001.
- [92] N. Bamiedakis, R. V. Penty, and I. H. White, "Carrierless amplitude and phase modulation in wireless visible light communication systems," *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 378, no. 2169. Royal Society Publishing, Apr. 17, 2020. doi: 10.1098/rsta.2019.0181.

- [93] M. A. Khalighi, S. Long, S. Bourennane, and Z. Ghassemlooy, "PAM- and CAP-Based Transmission Schemes for Visible-Light Communications," *IEEE Access*, vol. 5, pp. 27002–27013, Oct. 2017, doi: 10.1109/ACCESS.2017.2765181.
- [94] J. G. Proakis, *Digital Communications*, 4th ed. New York, NY, USA: McGraw-Hill, 2000.
- [95] G. Stepniak, "Comparison of Efficiency of N -Dimensional," Journal of Lightwave Technology, vol. 32, no. 14, pp. 2516–2523, 2014.
- [96] L. Rodrigues, M. Figueiredo, L. N. Alves, and Z. Ghassemlooy, "VLC frontends for IoT applications," in 2022 4th West Asian Symposium on Optical and Millimeter-Wave Wireless Communications, WASOWC 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/WASOWC54657.2022.9798416.
- [97] O. Haddad, M. A. Khalighi, Z. Ghassemlooy, A. A. Dowhuszko, and S. Zvanovec, "Performance Analysis of Multiple Access m-CAP for Optical-Based Intra-WBAN Links," in 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 595–600. doi: 10.1109/CSNDSP54353.2022.9907910.
- [98] L. Rodrigues, M. Figueiredo, L. N. Alves, and Z. Ghassemlooy, "Experimental validation of analog m-CAP receivers for Internet of Things," in 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 26–31. doi: 10.1109/CSNDSP54353.2022.9908027.
- [99] S. Shivaranjani and S. Kanakambaran, "Design of a Non-Orthogonal multiband Carrierless Amplitude and Phase Modulated Indoor Visible Light Communication System using Adaptive Equalizers," in 2021 5th Conference on Information and Communication Technology, CICT 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/CICT53865.2020.9672376.
- [100] M. Barrio, D. Izquierdo, J. A. Altabas, and I. Garces, "50 Gb/s Transmission using OSSB-MultiCAP Modulation and a Polarization Independent Coherent Receiver for Next-Generation Passive Optical Access Networks," *Journal of*

Lightwave Technology, vol. 39, no. 18, pp. 5722–5729, Sep. 2021, doi: 10.1109/JLT.2021.3092951.

- [101] M. M. Merah, H. Guan, and L. Chassagne, "Experimental Multi-User Visible Light Communication Attocell Using Multiband Carrierless Amplitude and Phase Modulation," *IEEE Access*, vol. 7, pp. 12742–12754, 2019, doi: 10.1109/ACCESS.2019.2893451.
- [102] L. A. Coldren, S. W. Corzine, and M. L. Masanovic, *Diode Lasers and Photonic Integrated Circuits*, 2nd ed. John Wiley & Sons, 2012.
- [103] P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, "High-speed, low-current-density 850 nm VCSELs," *IEEE Journal on Selected Topics in Quantum Electronics*, vol. 15, no. 3, pp. 694–703, 2009, doi: 10.1109/JSTQE.2009.2015465.
- [104] X. Zhang, M. B. Othman, X. Pan, J. B. Jensen, and I. T. Monroy, "Bidirectional Multi Dimension CAP Transmission for Smart Grid Communication Services," in Asia Communications and Photonics Conference (ACP), 2012.
- [105] X. Dong, N. Bamiedakis, D. G. Cunningham, R. v. Penty, and I. H. White, "A Novel CAP Equalizer for 112 Gb/s Data Transmission over 150 m MMF Links," in *IET Conference Publications*, 2019, pp. 5937–5944. doi: 10.1049/cp.2019.1054.
- [106] L. N. Binh, Optical Fiber Communications Systems: Theory and Practice with Matlab® and Simulink® Models. CRC Press, 2015.
- [107] A. Ellis and M. Sorokina, *Optical Communication Systems: Limits and Possibilities*. Jenny Stanford Publishing, 2020.

APPENDIX A

LIST OF PUBLICATIONS

Awards

- Research & Innovation (RnI) Festival, Bronze, "2D-CAP Modulation for In-Home Network", M. B. Jaafar, M. B. Othman, N. M. Ridzuan, 2-3 November 2014, UTHM Johor.
- Malaysia Technology Expo (MTE), Bronze, "High dimensionality CAP Modulation Technique for Access and In-Home Network", M. B. Othman, N. M. Ridzuan, M. B. Jaafar, M. F. L. Abdullah, J. B. Jensen, I. T. Monroy, 12-14 February 2015, PWTC KL.
- 5th International Conference on Design and Concurrent Engineering (iDECON), Best Paper Award, "Comparison of CAP and QAM-DMT Modulation Format for In-Home Network Environment", N. M. Ridzuan, M. B. Othman, M. B. Jaafar, M. F. L. Abdullah, 19-20 September 2016, Langkawi Kedah.

Journals

- N. M. Ridzuan, M. B. Othman, M. B. Jaafar, M. F. L. Abdullah, "Optical Transmission System Employing Carrierless Amplitude Phase (CAP) Modulation Format", *ARPN Journal of Engineering and Applied Science*, Vol. 11, No. 14, pp. 8776-8780, July 2016.
- M. B. Jaafar, M. B. Othman, N. M. Ridzuan, M. F. L. Abdullah, "1.25 Gbps and 2.5 Gbps Data Rate Transmission of 2D-CAP Modulation for Access

Network", *ARPN Journal of Engineering and Applied Science*, Vol. 11, No. 8, pp. 5066-5070, April 2016.

- N. M. Ridzuan, M. B. Othman, M. B. Jaafar, M. F. L. Abdullah, "Comparison of CAP and QAM-DMT Modulation Format for In-Home Network Environment", *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, Vol. 9, No. 3-2, pp. 1-4, Oct 2017.
- N. M. Ridzuan, M. F. L. Abdullah, M. B. Othman, M. B. Jaafar, "Carrierless Amplitude Phase (CAP) Modulation Format: Perspective and Prospect for Next Generation Access Network (NGAN)", *International Journal of Electrical and Computer Engineering (IJECE)*, Vol. 8, No. 1, Sep 2017.

Conferences

- N. M. Ridzuan, M. B. Othman, M. B. Jaafar, M. F. L. Abdullah, "Optical Transmission System Employing Carrierless Amplitude Phase (CAP) Modulation Format", *Malaysian Technical Universities Conference on Engineering and Technology (MUCET)*, 11-13 Oct 2015, Johor Bharu, Malaysia.
- M. B. Jaafar, M. B. Othman, N. M. Ridzuan, M. F. L. Abdullah, "1.25 Gbps and 2.5 Gbps Data Rate Transmission of 2D-CAP Modulation for Access Network", *Malaysian Technical Universities Conference on Engineering* and Technology (MUCET), 11-13 Oct 2015, Johor Bharu, Malaysia.
- M. B. Jaafar, M. B. Othman, N. M. Ridzuan, M. F. L. Abdullah, R. Mohamad, T. Kanesan "Simulation of High Dimensionality Carrierless Amplitude Phase (CAP) Modulation Technique", *IEEE 6th International Conference on Photonics (ICP)*, 7510003, 14-16 March 2016, Kuching, Malaysia.
- N. M. Ridzuan, M. B. Othman, M. B. Jaafar, M. F. L. Abdullah, "Comparison of CAP and QAM-DMT Modulation Format for In-Home Network Environment", 5th International Conference on Design and Concurrent Engineering (iDECON), 19-20 Sept 2016, Langkawi, Malaysia.

APPENDIX B

VITA

The author was born on September 15, 1984, in Batu Pahat, Johor, Malaysia. She went to Maktab Rendah Sains MARA, Muar, Johor, Malaysia for his secondary school. She pursued her degree at the Universiti Teknologi Malaysia (UTM) and graduated with the B.Eng. (Hons) in Electrical-Telecommunication in 2007. Upon graduation, she worked as an R&D Electrical Engineer at Panasonic Communication (Malaysia) Sdn.Bhd. for two years. She then worked as a Vocational Training Officer under Electrical & Electronics Department at Institut Latihan Perindustrian (ILP) Bukit Katil Melaka, Malaysia. While working, she enrolled at the Universiti Tun Hussein Onn Malaysia (UTHM), in 2011, where she was awarded the M. Eng. in Electrical Engineering in 2013. She attended the Centre for Graduate Studies of Universiti Tun Hussein Onn Malaysia (UTHM) and was admitted into the Ph.D. program in Electrical Engineering in 2014. In 2015, she followed her spouse to Kyoto Japan to further his study in Kyoto University for 3.5 years. Mrs. Noridah reported for duty as a Vocational Training Officer under Electrical & Electronics Department at Advanced Technology Training Centre (ADTEC) Melaka in 2019. She is currently a professional technologist of the Malaysia Board Technologists (MBOT) electrical & electronics technology (EE) and graduate engineer of the Board of Engineers Malaysia (BEM).

