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ABSTRACT 

In the search for staining dyes for three-dimensional cell imaging, graphene quantum 

dots (GQDs) that are nanometers in scale, photoluminescent (PL), and dispersible in 

water may be investigated. The doping of graphene-based materials with nitrogen 

heteroatoms has demonstrated the ability to control the optical, electrical and opto-

electronic properties of nitrogen-doped GQDs (N-GQDs). However, the 

characteristics of the energy-state and the properties of the N-GQDs are still unclear 

and require more study. This thesis designed and synthesised nanometer-sized GQDs 

using the hydrothermal technique. In addition, theoretical model based from 

experimental results of N-GQDs was execute by electronic structure calculations via 

the density function theory (DFT) using the GAUSSIAN 09 and GAMESS software. 

The sterilised N-GQDs after hydrothermal synthesis produce a high-crystalline form 

of N-GQDs with aspect (100) with lattice distance of 0.21 nm. The synthesis also 

produced one-layer or multiple-layer N-GQDs with an average diameter of 3.2 nm. 

The N-GQDs also highly soluble in water. It also exhibited high fluorescence 

emission ranging from 500 to 600 nm with green-coloured PL with highest peak at 

525 nm contributed to electronic energy gap of 3.38 eV. In terms of bio-

compatibility, the study shows cell viability ranging from 80%–90%, non-toxic. 

Moreover, this is the first study using GQDs for 3D cell imaging to display stained 

3D cells with scattered individual cells in a multi-layered structure. For the DFT 

simulations, calculation shows that the range of electronic energy from the highest 

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO) of the GQDs depended on graphitic nitrogen doping and edge functionality. 

In conclusion, this research shows a novel optoelectronic properties extract from the 

energy levels of N-GQDs derived from experimental and theoretical calculations for 

3D cell imaging applications.  
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ABSTRAK 

Di dalam pencarian pewarna untuk pengimejan sel tiga dimensi, titik kuantum grafen 

(GQD) yang berskala nanometer, photoluminescent (PL) dan kebolehlarutan di 

dalam air akan dikaji. Mendopan grafen dengan heteroatom nitrogen (N-GQDs) telah 

menunjukkan keupayaan untuk mengawal sifat optik, elektrik dan opto-elektronik 

bahan tersebut. Walaubagaimanapun, ciri-ciri tenaga dan sifat-sifat N-GQD masih 

tidak jelas dan memerlukan lebih banyak kajian. Tesis ini merekabentuk dan 

mensintesis GQD bersaiz nanometer dengan menggunakan teknik hidroterma. 

Disamping itu, dengan menggunakan model N-GQDs berdasarkan keputusan 

eksperimen, pengiraan struktur elektronik telah dikira menggunakan teori fungsi 

ketumpatan (DFT) melalui perisian GAUSSIAN 09 dan GAMESS. N-GQD yang 

telah disteril selepas sintesis hidroterma menghasilkan bentuk N-GQD yang 

berhablur tinggi dengan aspek (100) dengan jarak kekisi 0.21 nm. Sintesis juga 

menghasilkan satu lapisan atau berbilang lapisan N-GQD dengan purata diameter 3.2 

nm. N-GQD ini juga sangat larut dalam air. Ia juga mempamerkan pelepasan 

pendarfluor yang tinggi iaitu antara 500 hingga 600 nm dengan PL di puncak 

tertinggi pada 525 nm yang berwarna hijau, menyumbang kepada jurang tenaga 

elektronik sebanyak 3.38 eV. Dari segi keserasian bio, kajian menunjukkan daya 

maju sel antara 80%–90%, iaitu tidak toksik. Selain itu, ini adalah kajian pertama 

menggunakan GQD untuk pengimejan sel 3D untuk memaparkan sel 3D berwarna 

dengan sel individu bertaburan dalam struktur berbilang lapisan. Untuk simulasi 

DFT, pengiraan menunjukkan bahawa julat tenaga elektronik daripada orbital 

molekul yang diduduki tertinggi (HOMO) kepada orbital molekul tidak diduduki 

terendah (LUMO) GQD bergantung kepada pendopan nitrogen di dalam grafen dan 

kefungsian tepi grafen. Kesimpulannya, penyelidikan ini menunjukkan penemuan 

baharu pada sifat optoelektronik daripada tahap tenaga N-GQD yang diperoleh 

daripada pengiraan eksperimen dan teori untuk aplikasi pengimejan sel 3D.
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

The development of many low-cost optoelectronic devices, such as fluorophores and 

biological labelling sensors, is derived from the fundamentals of luminescent 

nanomaterials [1]. Luminescent nanomaterials with tunable properties and 

controllable emission wavelength are still gaining research attention. Generally, 

semiconductor quantum dots, gold nanodots, silicon nanoparticles, and carbon-based 

nanomaterials are recognised as new efficient emitters [1–4]. Among these 

nanoparticles, quantum dots (QDs) are known to have the brightest fluorescence. 

Moreover, QDs have been defined as a class of semiconductor nanoparticles 

composed of elements from the II–VI or III–V periodic groups with diameters 

ranging from 1 to 10 nm [5]. Based on quantum physics, nanometer-sized QDs 

possess optical and electrical properties that differ from those of macroparticles. 

Therefore, various compositions and sizes of QDs have been developed for clinical 

applications. 

The fluorescence of QDs is caused by light absorption, which enables 

electrons to be excited from the valence band to the conduction band, leaving holes 

behind. Light can be emitted when an electron and a hole bond together to produce 

exciton energy. Figure 1.1 illustrates the excitation process of an electron-hole pair. 

Bandgap energy is calculated as the sum of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO). When a particle has 

a radius larger than its own Bohr radius, the exciton can move freely without any 

boundary. However, the size of a QD is smaller than its own Bohr radius, and hence 
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the exciton is confined in a space, leading to the quantum confinement effect. When 

an electron and a hole are attracted to each other due to the electrical Coulomb 

attraction, the exciton of photons occurs, leading to the excitation of the electron 

from the valence band to the conduction band. 

 

 

Figure 1.1: Excited electron and hole after UV light was given, leading to total 

energy as bandgap energy 

A Bohr radius in Gaussian unit is given by:  

 

where  is the Bohr radius,  is the reduced Plank’s constant, and  is the 

electron rest mass. For instance, the Bohr radius of the hydrogen atom is 

approximately 0.53 Å [6].  The light emission of quantum dots occurs due to the 

quantum confinement effect. This event is a result of excitons taking quantised 

energy levels and being confined in space, and the free movement of excitons in all 

directions is restricted [7]. Therefore, QDs have larger bandgaps with sharp 

absorbance peaks and high photoluminescence (Figure 1.2). The confinement of 

energy depends on the quantum dots’ size, which can be tuned during the synthesis 

process. Powerful inorganic fluorescent probes, such as semiconductor QDs, have 

exceptional long-term resistance to photobleaching [8]. 

 

(1.1) 
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Figure 1.2: Emission spectra of quantum dots relative to increasing size of QDs 

Carbon-based nanomaterials or carbon dots have advantages such as 

providing more stable emission, lower environmental impact, and lower toxicity 

compared with those of other semiconductor nanomaterials, such as cadmium 

selenide and cadmium telluride quantum dots. The size-tunable property of QDs is 

also important for wide applications of fluorescent quantum dots and related 

nanostructures. 

1.2 Problem Statement 

In numerous biomedical optical imaging experiments, cadmium selenide (CdSe) or 

cadmium sulphide (CdS) and their core shell nanoparticles from semiconductor 

quantum dots (QDs) have been employed [9], [10]. However, the QDs of cadmium 

telluride are toxic to cells [11]. Nevertheless, due to the size of QDs being larger than 

that of biomolecules, QDs have the potential of influencing the dynamics and 

functions of the molecules of interest, as well as constructing artificial clusters and 

interacting with a wide range of targets [12]. To fill up this research gap, the current 

work is to synthesize QDs in a few nanometer scale. In addition, the synthesis of 

QDs suffers from high complexity, low quantities, and high material expenses. 

Finding fluorophores that can provide photostability is crucial for bio-imaging. To 

date, researchers have shown interest in carbon-based nanomaterials, such as 
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graphene quantum dots (GQDs), where the application of GQDs in biomedical 

sciences is still in the early stages [13].  

Despite recent breakthroughs in GQD synthesis, the development of 

environmentally friendly techniques for the synthesis of graphene is now crucial for 

practical applications. [14] Conventional GQD synthesis processes have 

environmental concerns, such as hazardous compounds employed as cutting agents 

[15]. These technologies frequently have severe negative consequences on the 

environment and human health, limiting the practical applications of GQDs. Several 

initiatives have been undertaken in recent years to solve this issue, including the 

creation of non-toxic chemical cutting agents, alternate reduction pathways for 

graphene oxide (GO), and direct exfoliation of natural or synthetic graphite [15]. For 

instance, hydrothermal synthesis is an environmentally friendly technique that can 

also generate small particle sizes of GQDs.  

Nitrogen-doped GQDs (N-GQDs) have received a lot of attention due to their 

optical features, electrocatalytic ability, and biocompatibility [16]. However, the 

energy-state characteristics and the properties of N-GQDs remain unclear and need 

more studies in order to develop N-GQDs for various applications. Doping graphene-

based materials with heteroatoms has demonstrated the capacity to control the 

optical, electrical, and optoelectronic properties of GQDs. Hence, the tuning of 

optical properties via the electronic structure of GQDs can be further studied. 

To date, researchers have engineered two-dimensional (2D) cells into 

microtissues [17] or three-dimensional (3D) cells that mimic the in-vivo environment 

of cells being surrounded by other cells and the extracellular matrix (ECM). There 

are limited studies on drug delivery that used 2D cells due to the irrelevant 

physiological properties of a cell culture in a plastic vessel, such as proliferation, in-

vivo protein expression, cell morphology, and gene [17]. For the application of 

nanomaterials in biomedical engineering, most of the current investigations on 

nanotherapeutics are still performed either using 2D cell cultures or in-vivo models. 

Nanomaterials’ application in 2D cell models is not representative and far from in-

vivo models due to the oversimplicity of 2D cell models. On the other hand, the use 

of in-vivo models requires stringent bioethics when handling animals. Moreover, as 

compared with cells in a 3D environment, 2D monolayer cell cultures present a less 

significant barrier for transport and lower cell binding. Hence, a 3D cell model that 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 

 

mimics in-vivo tissues presents an improved model for investigating the interaction 

of fluorescent carbon quantum dots with multilayered cells. 

The development of 3D cells into scaffolds of microtissues might be 

beneficial for research on drug delivery, tissue implants, and cancer treatment and 

medication. The interaction of GQDs with a 3D cell model is rarely reported, and 

this study is the first study to apply GQDs in a 3D cell culture model. Cells do not 

require an external scaffold for aggregation, since they create the ECM, which, in 

turn, improves intercellular adhesion [18]. Hence, a 3D cell model can serve as a 

tissue-mimicking model for the study of GQDs. This research provided evidence that 

the GQDs produced in this work are suitable to be applied in 2D and 3D cell studies 

and may even be applied in the future as an anti-cancer drug carrier with a 

fluorescence property for cell tracking. 

1.3 Objective 

The aim of this study is to synthesise and investigate the properties of fluorescent 

GQDs. The following are the objectives that needed to be achieved: 

a) To study the physical properties of graphene oxide synthesised using 

modified Hummer’s method prior to producing the GQDs, as well as to 

quantise the energy levels. 

b) To optimise nitrogen-doped GQDs synthesis using the hydrothermal 

technique and investigate the structural, morphological and optical 

characterisation of the N-GQDs. 

c) To investigate the microencapsulated 3D cells doped with N-GQDs for 

fluorescence imaging of cells.  

d) To compare the defects on the electronic energy structure of GQDs from 

experimental synthesis of nitrogen doping GQDs and theoretical 

calculations. 

1.4 Scope 

In this study, the approach to synthesise GQDs with fluorescence properties was:- 

(a) By using a precursor, which was graphene oxide.  
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(b) The characterisations of the physical properties of graphene oxide were via 

thermal, Raman spectra, and XRD analyses. 

(c) Its chemical elements were characterised using FTIR and XPS.  

(d) The structural properties of graphene oxide were characterised using TEM, 

FESEM, and AFM analyses.  

(e) Theoretical calculations of the electronic structure of GQDs employed the 

density functional theory (DFT) via GAUSSIAN 09 and GAMESS software 

and the results were studied.  

1.5 Research Contribution 

This study’s main originality lies in the following: 

a) An enhancement of energy gap (3.38 eV) from nitrogen doping to the energy 

levels of the graphene layer using hydrothermal method which used to 

produce nano-sized graphene sheets provides an effective means of tuning the 

optical properties of N-GQDs. 

b) The elucidation of the effects of nitrogen doping, size, and edge termination 

of GQDs from experimental and theoretical calculation for fluorescent 

enhancement. 

c) A novel contribution to bio-imaging modality via detailed properties of 

graphene nanosheets for engineering GQDs for application in 3D cell 

imaging. 

1.6 Outline of Thesis 

This thesis comprised five chapters, with the contents of each chapter briefly 

summarised as follows. 

In Chapters 1, introduction on this research were discussed. The objective, 

scope and novelty of this research were highlighted.   

Chapters 2 present the background of this study such as introduction on 

graphene oxide, graphene, GQDs and previous GQDs synthesis techniques. Some 
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applications of GQDs are also explained in this chapter. The purpose of this work is 

defined. 

In Chapter 3, the characterisations of GQDs and the parameters used to 

determine quantisation are described. The methods for the physical characterisations 

of GQDs are explained. The contribution of electronic and quantum states is briefly 

described. The effects of the nanostructure on the electronic state and the possibility 

to improve the efficiency of GQDs are also discussed. 

In Chapter 4, the results are revealed and a detailed discussion is presented on 

the effect of hydrothermal synthesis on the energy levels of the nitrogen-doped 

GQDs. The biocompatibility of the GQDs with HeLa cells and the bio-imaging of 

the GQDs on HeLa cells were studied. Furthermore, the toxicity and imaging of 

microencapsulated cells doped with the N-GQDs are also discussed in this chapter. 

The N-GQDs were tested on 3D cells, instead of 2D cells, for the bio-imaging 

application.  

Chapter 5 explained about the theoretical calculations of the GQDs 

performed using the GAUSSIAN 09 and GAMESS software. The measurement 

results of the nitrogen-doped GQDs’ bandgap output efficiency are also presented. 

The comparison between the measured and theoretical HOMO and LUMO electronic 

transitions of the GQDs are briefly discussed in this chapter. The hydrothermal 

synthesis of GQDs from the GO precursor and the effects of heteroatom doping on 

the GQDs are discussed. The quantisation of energy gap was studied via the physical 

and photoelectronic properties of the nitrogen-doped GQDs.  

Finally, in Chapter 6, the summary of the simulations of the GQDs’ 

electronic structure, the characterisations of the GQDs, and the imaging of 3D cells 

using the GQDs is explained. Future works in bio-imaging applications are also 

presented.   
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, the techniques used to produce graphene are described. Graphene has 

attracted the attention of numerous researchers to study the use of this material in 

many applications. However, this study focused on the fluorescence properties of 

graphene. 

2.1 Graphene and Graphene Oxide 

Scientist R. Wallace [19] discovered the characteristics of graphene in 1947, and 

Hoffman et al. produced pure graphene from graphene oxide via hydrazine reduction 

in 1963. After Geim and Novoselov’s work on separating graphene from highly 

oriented pyrolytic graphite (HOPG) and researching graphene’s beneficial features, 

graphene has drawn a lot of attention, such as research on fluorescence emission[3]. 

Graphene is a one-atom-thick planar structure of carbon atoms arranged in a 

honeycomb crystal lattice, and it is a semiconductor with a zero bandgap and with 

excitons having an infinite Bohr diameter. Theoretically, by varying the size of 

benzene in graphene’s structure, the bandgap of 0 eV can be modified. In other 

materials, due to the low temperature dependence of electron mobility, electron 

transport is constrained by defect scattering rather than phonon scattering [20]. Thus, 

confinement can be observed in any fragment. The study of the optical properties of 

graphene typically starts with the investigation of the optical properties of graphite 

intercalation compounds.  

Due to the properties of quantum dots, such as long-term photobleaching 

resistance, adjustable photoluminescence, and minimal cytotoxicity, graphene has 
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