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ABSTRACT

The quantification of the left ventricle (LV) by cardiac short-axis magnetic resonance
images (MRI) is critical in the diagnosis of cardiovascular diseases. The LV clinical
metrics are frequently extracted based on the LV segmentation and localization from
short-axis MRI images. Manual LV segmentation and localization is tedious and time-
consuming task for medical experts to diagnose cardiac pathologies. Therefore, a fully
automated LV segmentation and localization technique is required to assist medical
experts in working more efficiently. This study proposed a region-based convolutional
network (Faster R-CNN) for the localization of LV from short-axis cardiac MRI
images using a region proposal network (RPN) integrated with deep feature
classification and regression. In addition, a fully convolutional network (FCN)
architecture for automatic LV segmentation from short-axis MRI images was
proposed. Several experiments were conducted in the training phase to compare the
performance of the network and the U-Net model. The segmentation models were
trained and tested on a public dataset, namely the evaluation of myocardial infarction
from the delayed-enhancement cardiac MRI (EMIDEC) dataset. The dice metric,
Jaccard index, sensitivity, and specificity were used to evaluate the segmentation
network’s performance, with values of 0.93, 0.87, 0.98, and 0.94, respectively. Based
on the experimental results, the proposed network outperforms the standard U-Net
model and is an advanced fully automated method in terms of segmentation
performance. The localization model was effective, with accuracy, precision, recall,
and F1 score values of 0.91, 0.94, 0.95, and 0.95, respectively. This model also allows
the cropping of the detected area of LV, which is vital to reduce the computational cost
and time during segmentation and classification procedures. The proposed methods
could be improved to be applicable in clinical practice for doctors to diagnose cardiac

diseases from cardiac short-axis MRI images.
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ABSTRAK

Pemeriksaan ventrikel kiri (LV) dengan menggunakan Pengimejan Resonan Magnet
(MRI) paksi pendek jantung adalah sangat penting dalam mendiagnosis penyakit
kardiovaskular. Metriks ventrikel kiri, kebiasaannya diekstrak berdasarkan
pembahagian dan pengasingan daripada imej MRI paksi pendek. Pembahagian dan
pengasingan LV secara manual adalah tugas yang sukar menyebabkan pakar perubatan
memerlukan masa yang panjang untuk mendiagnosis patalogi jantung. Oleh itu,
kaedah pembahagian dan pengasingan yang berfungsi sepenuhnya secara automatik
adalah diperlukan untuk memastikan kecekapan pakar perubatan dalam menjalankan
tugas mereka. Didalam kajian ini, satu rangkaian konvolusi berasaskan kawasan (faster
R-CNN) untuk pengasingan LV daripada imej MRI jantung paksi pendek
menggunakan rangkaian RPN, disepadukan dengan klasifikasi dan regresi ciri
mendalam telah disarankan. Sehubungan itu, satu prototaip rangkaian konvolusi
sepenuhnya (FCN) telah dibangunkan. Beberapa eksperimen telah dijalankan sewaktu
fasa ujikaji, untuk membandingkan prestasi antara rangkaian tersebut dan model U-
net. Model pembahagian telah dijalankan dan diuji keatas sekumpulan data umum iaitu
penilaian infarksi miokardium daripada kumpulan data perkembangan jantung
terbantut MRI (EMIDEC). Metrik dadu, indeks Jaccard, sensitiviti dan kekhususan
telah digunakan untuk menilai prestasi rangkaian pembahagian, masing-masing
bernilai 0.93, 0.87, 0.98, dan 0.94. Berdasarkan keputusan eksperimen, rangkaian yang
disarankan didapati telah berjaya mengatasi model U-Net standard dan merupakan
kaedah automatic sepenuhnya yang lebih canggih dari segi prestasi pembahagian.
Kaedah pemisahannya adalah berkesan, dengan benar, tepat, panggilan kembali dan
skor F1 masing-masing bernilai 0.91, 0.94, 0.95, and 0.95. Model ini juga berupaya
untuk membolehkan pemisahan kawasan LV yang dikesan, yang penting untuk
mengurangkan kos pengiraan, masa pembahagian serta prosedur pengelasan. Kaedah
yang dicadangkan boleh dipertingkatkan untuk digunakan dalam amalan klinikal

untuk doktor mendiagnosis penyakit jantung daripada imej MRI paksi pendek jantung.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the key elements of the research topics. Section 1.2 represents
a brief background of the research components, followed by stating the research
problems in section 1.3, and the research objectives are listed in section 1.4. The scope
and the research contribution are presented in section 1.5 and 1.6, respectively. Finally,

the organization of the thesis is explained briefly in section 1.7.

1.2 Research background

Cardiovascular disease (CVD) is regarded as one of the most severe threats to human
health, and it has contributed to an increase in the global mortality rate. According to
the World Health Organization, 17.9 million people died from cardiovascular disease
in 2016, accounting for 31% worldwide deaths [1]. The American Heart Association
estimates that human life expectancy can be extended by ten years if cardiovascular
diseases can be prevented by effective diagnosis at an early stage. The early detection
of CVDs is a crucial factor in determining the suitable treatment that can improve
human life and decrease the mortality rate. As a result, there is a growing emphasis on
research and technologies that can effectively improve the diagnosis of cardiovascular
diseases while also lowering the mortality rate caused by those diseases. In recent
years, the diagnosis of cardiovascular diseases has become more accessible thanks to
advancements in medical imaging techniques such as computed tomography (CT) and

cardiac magnetic resonance imaging (CMRI).
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