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ABSTRACT 

There is a growing interest in accurate methods to detect heart disease since this is one 

of the leading causes of mortality worldwide. This interest has spurred advancements 

in various fields, including the application of deep learning algorithms for heart disease 

detection. One such algorithm is the Gated Recurrent Unit (GRU), which falls under 

the category of Recurrent Neural Network (RNN) that comprises an update gate and 

reset gate. GRU is considered one of the most efficient prediction approaches, 

particularly on time series datasets. However, when GRU was used to address heart 

disease prediction, it encountered three significant problems such as failure of data 

dimensionality reduction, slow convergence rate and high computational cost. 

Therefore, this research proposed a model named Chi-square Gated Recurrent Unit 

(χ2-GRU) to solve the dimensionality reduction issues. However, still, the χ2-GRU 

model has a slow convergence rate. This problem is tackled by enhancing the χ2-GRU 

model to Chi-square U-prime Gated Recurrent Unit (χ2-U/GRU) by dividing the update 

gate functionality into two parts. Finally, the 𝑡𝑎𝑛ℎ activation function in the candidate 

state is replaced by a Tunable Swish function in order to minimize the computational 

complexity of the proposed χ2-U/GRU. The proposed χ2-GRU and χ2-U/GRU models 

have been evaluated on four benchmark heart disease datasets and compared with five 

prediction approaches, including GRU, LSTM, CNN, SVM, and Random Forest. 

Based on the performance evaluation factors, including accuracy, precision/recall, F-

Measure, specificity, and Friedman statistical test, it has been found that the proposed 

models perform significantly better than other prediction approaches and demonstrate 

the improved effectiveness and efficiency of the developed models. The proposed 

model exhibited a remarkable accuracy rate of 93.1%, 88.9%, 89.3% and 86.0%, 

showcasing its ability to make accurate predictions.   
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ABSTRAK 

Terdapat minat yang semakin meningkat dalam kaedah mengesan penyakit jantung 

kerana penyakit ini adalah salah satu punca utama kematian pada seluruh dunia. Isu 

ini telah menarik minat dalam pelbagai bidang, termasuk pengunaan aplikasi algoritma 

pembelajaran mendalam untuk mengesan penyakit jantung. Salah satu algoritma yang 

digunakan dalam kajian ini ialah Unit Berulang Berpagar (GRU), yang termasuk 

dalam kategori Rangkaian Neural Berulang (RNN) yang terdiri daripada mengemas 

kini dan menetapkan semula pintu. GRU dianggap sebagai salah satu pendekatan 

ramalan yang paling effektif, terutamanya pada set data. Walau bagaimanapun, apabila 

GRU dicadangkan untuk menangani penyakit jantung ini  terdapat tiga masalah 

penting dalam GRU, seperti kegagalan pengurangan dimensi data, kadar penumpuan 

yang perlahan dan kos pengiraan yang tinggi. Oleh itu, penyelidikan ini mencadangkan 

satu model yang dinamakan Unit Berulang Berpagar Chi-square (χ2-GRU) untuk 

menyelesaikan isu pengurangan dimensi. Walau bagaimanapun, model χ2-GRU 

mempunyai kadar penumpuan yang perlahan. Masalah ini diatasi dengan 

meningkatkan model χ2-GRU kepada Unit Berulang Berpagar U-kuadrat U (χ2-

U/GRU) dengan membahagikan kefungsian mengemas kini (update gate) kepada dua 

bahagian. Akhir sekali, fungsi pengaktifan 𝑡𝑎𝑛ℎ dalam keadaan calon digantikan 

dengan fungsi Tunable Swish baharu untuk meminimumkan pengiraan χ2-U/GRU 

yang dicadangkan. Model χ2-GRU dan χ2-U/GRU yang dicadangkan dalam 

penyelidikan ini akan dinilai pada empat set data penyakit jantung dan dibandingkan 

dengan lima pendekatan ramalan, termasuk GRU, LSTM, CNN, SVM dan Random 

Forest. Berdasarkan faktor penilaian prestasi, ketepatan, ketepatan/ingat, F-Measure, 

kekhususan, dan ujian statistik Friedman, didapati bahawa model yang dicadang akan 

memberikan prestasi yang lebih baik daripada pendekatan ramalan yang lain, memberi 

peningkatan keberkesanan dan kecekapan yang dibangunkan. Model yang 

dicadangkan memberi kadar ketepatan yang luar biasa iaitu 93.1%, 88.9%, 89.3% dan 

86.0%, memberi keupayaan untuk membuat ramalan yang tepat.
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CHAPTER 1  

INTRODUCTION 

1.1 Background Study 

Currently, studies show that in various countries, the percentage of heart disease is 

increasing daily and has been considered one of the prevalent causes of death in both 

genders (men and women) above age sixty. According to the studies (Amini et al., 

2021; Townsend et al., 2022), heart disease in most countries is regarded as a “second 

epidemic,” a prominent cause of death after any infectious disease. Cardiovascular 

disease (CVD) is also known as ischemic heart disease, stroke, cardiac insufficiency, 

peripheral artery disease, and several other vascular disorders. It has a significant 

contribution to world mortality and has become a crucial cause of reducing the age of 

life. Heart disease caused an estimated 17.8 million deaths around the globe in 2017. 

Furthermore, around 330 million years of life were lost, and almost 35.6 million years 

were lived with infirmity (James et al., 2018; Kyu et al., 2018). Approximately 80% 

of worldwide heart failure deaths occur in lower economies and developing countries 

which ramp up heart disease and risk factors due to continuing epidemiological 

transition (Anand et al., 2020). Middle-class economies commonly confront heart 

disease compared to high or low-economic countries. According to the report launched 

by the world health organization (WHO) and World Bank, the Global Burden of 

Disease (GBD) research (World Bank, 1993) to deal with this challenge in 6 cycles of 

GBD appraisal published over the years 1999-2004, 2010, 2013, 2015, 2016 and 2017 

(Murray & Lopez, 2013; Murray & Lopez, 2017). Furthermore, with advancements in 

clinical practice, training, and research in worldwide health, the active involvement of 

the cardiology community is crucial. The availability of up-to-date statistics on heart 
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disease is beneficial in these efforts. The numerous reports by the Institute of Medicine 

promote CVD health and the preventive methods for the epidemic of heart disease in 

developing countries (Teo & Rafiq, 2021). Prompt analysis and curing actions against 

disease may reduce the risk of the condition becoming more severe. Gaining a 

thorough grasp of risk and preventive variables and improving diagnostic accuracy is 

essential. 

Two methods are used for heart disease diagnosis in hospitals or cardiac 

centers: (i) Invasive Methods and (ii) Non-Invasive Methods. Electrocardiogram, 

magnetic resonance imaging, echocardiogram, single-photon emission computer 

tomography, and exercise stress testing are all non-invasive diagnostic methods. 

However, their results are uncertain and unreliable as angiography (Kumar & Kumar, 

2021). Angiography is an invasive diagnostic method, but it is a highly expensive, 

intrusive, and technically demanding operation. Therefore, it cannot be used for large-

scale population screening or treatment monitoring (Verma et al., 2018). Furthermore, 

these procedures consume significant resource expenditures, such as time, an exclusive 

laboratory setup, and specific instruments and techniques. Due to these limitations of 

diagnostic methods, hospitals or cardiac research centers are looking for other less 

costly and non-invasive approaches to diagnose heart diseases, such as artificial 

intelligence techniques, which can lead to a straightforward identification of heart 

disease without going through angiography. 

Furthermore, in the field of medicine, Artificial Intelligence (AI) is expected 

to be utilized for health analysis, curing actions, forecasting upcoming risks, and 

recognizing appropriate medication (Gulshan et al., 2016). Additionally, AI 

implementation is ramping up at a remarkable rate in medicine. AI can be categorized 

depending on the machine’s capacity for predicting future decisions based on past 

experiences. There are four leading AI technologies: machine learning, cognitive 

computing, automation and robotics, and machine vision. The increasing collection of 

medical data has increased the potential for clinicians to enhance patient analysis. In 

the current era, physicians have enhanced their use of computer technology to progress 

in result-creating support. Statistical and machine-learning approaches have been more 

popular in medical diagnostics over the last few decades (Verma et al., 2018; Richens 

et al., 2020). 

Moreover, machine learning has become a top-rated tool in the medical sector 

for the initial analysis of diseases. Machine learning is an analytical method utilized 
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when a task is outsized and complicated to program, for example, transforming 

medical records into knowledge, predicting pandemics, and analyzing genetic data 

(Shalev-Shwartz & Ben-David, 2014; Hastie et al., 2017). In recent times, different 

machine-learning approaches have been utilized in research studies to recognize and 

predict various heart problems. An automated classifier with congestive heart failure 

has been used for classifying the patients into two categories, i.e., patients with low 

risks and patients with high risks (Melillo et al., 2013). To come up with the optimal 

features and outclass-performing results, a deep neural network (DNN) has been used 

for the categorization of electrocardiogram (ECG) data (Rahhal et al., 2016). A clinical 

decision support system (CDSS) is designed to assess the failure of the heart. The 

authors also inspected the effectiveness of numerous machine learning approaches, 

including a support vector machine (SVM), a CART-based system with fuzzy rules, 

neural networks, and Random forests (Guidi et al., 2014). Natural language processing 

(NLP) and the rule-based method have been utilized to find New York Heart 

Association classes to identify heart failure from amorphous medical records (Zhang 

et al., 2017). To analyse heart disease in diabetic patients, an SVM approach accurately 

predicts features like blood sugar, blood pressure, and age (Parthiban & Srivatsa, 

2012). Contemporary research studies have revealed that a substantial role has been 

played by different neural network models in forecasting and dealing with several 

classification problems. In the healthcare domain, deep learning methods have played 

a vital role in retrieving expedient facts and predicting diseases such as diabetes, heart 

disease, and brain diseases by surveying collected biomedical data (Shickel et al., 

2018). 

Additionally, deep learning models are the enhanced version of conventional 

artificial neural networks (ANN) that process difficult tasks. When more layers and 

units are added to existing neural networks, the network's expressional power 

increases, resulting in increased cost function complexity. Developing deep learning 

models has overcome the limitations and drawbacks of standard neural networks. Deep 

learning models have been utilized in different fields, including medical text 

classification (Hughes et al., 2017), natural language processing (George  & Joseph, 

2014), transfer learning (Long et al., 2017), and computer vision (Voulodimos et al., 

2018). The petite rate of computer equipment, vigorous processing proficiencies, and 

remarkable revolution in machine learning methods have driven the motivation to 

develop and implement autoencoders, denoising autoencoders and stacked denoising 
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autoencoders deep learning techniques. Therefore, Recurrent Neural Network (RNN) 

has also played an important role in predicting future diseases by employing fast 

patient representation of electronic health records (EHR) (Miotto et al., 2016). 

Furthermore, Recurrent Neural Network has been widely employed in various 

data mining applications in the last few years to demonstrate improved classification 

performance. RNN can demonstrate robust semantic composition techniques for 

sentiment categorization as well as grasp temporal relationships in sequence 

information (Liu, 2016). The primary advantage of RNN is that it can extract 

sequential temporal data with varied duration, resulting in flexibility in analyzing 

reviews of varying lengths. There are several forms of RNN, including Matrix-Vector 

RNNs (Baly et al., 2017), Recursive Neural Networks (Irsoy & Cardie, 2014), 

Recursive Neural Tensor Networks (Socher et al., 2013), Long Short-Term Memory 

(LSTM) (Hochreiter & Schmidhuber, 1997), and Gated Recurrent Unit (GRU) (Cho 

et al., 2014). Above all, LSTM and GRU are well-known recurrent architectures. GRU 

is a variation of the RNN series, the most recent form of sophisticated LSTM cell 

architecture. GRU is frequently employed the same way as other RNN nodes, 

especially when the input data contains noise and other methods fail to identify the 

data points. 

Although LSTM and GRU have the same goal of classifying input based on 

prior time steps, their functioning mechanisms are fundamentally different. LSTM 

architecture comprises three gates and is more complicated than GRU, whereas the 

GRU is a state-of-the-art and simple model that comprises two gates an update gate 

and a reset gate. The responsibility of the update gate is to determine the amount of 

the preliminary data from the preceding time step t should be updated and sent for 

future usage. While the reset gate functions the opposite way as the update gate, it is 

used in the standard GRU model to determine the amount of prior data from the 

preceding hidden state that may be ignored. GRU has three layers and fewer 

parameters, all described by a simple set of equations, using far fewer processing 

resources. The input, hidden, and output layers are the three layers utilized to learn 

statistical characteristics more quickly (Xing & Xiao, 2019). Medical field data is 

highly dimensional and has many attributes from the raw data. As a result, in current 

deep learning research, multiple layers have been utilized to extract the most important 

attributes from raw data. Even though GRU is one of the supreme operative approaches 

for addressing a variety of disease forecasting issues. Numerous researchers have 
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improved the performance and accuracy of GRU for disease prediction in the past, but 

there are still substantial shortcomings and limits in the GRU as it currently 

necessitates further research. 

The research’s primary goal is to augment the basic GRU architecture by 

reducing complexity and increasing performance. The major participants of this 

research are divided into three stages. The first stage is to improve the performance of 

the GRU model with the Chi-square (χ2) method for dimensionality reduction to solve 

heart disease prediction tasks. In the second stage, this research work introduces the 

update-prime gate (U/-gate), which divides the existing update gate into two parts. 

Each part of the update gate will be responsible for implementing one task at a time, 

so there will be a significant performance improvement. Finally, in the third stage, the 

research substitutes the hyperbolic tangent activation function (tanh) with the novel 

Tunable Swish (T-Swish) activation function in the candidate equation. Hence, this 

modification also improves disease prediction accuracy and reduces the overall 

computational time. 

1.2 Problem Statement 

Genetic variants and climatic influences work together to cause common diseases. 

Because of this complexity, predicting whether or not a person will inherit diseases is 

extremely difficult. In developing countries, it is more difficult to diagnose heart 

disease as qualified medical professionals, equipment used for diagnosis, and other 

resources are scarce for identifying and treating individuals with heart problems 

(Verma et al., 2018). Algorithmic models can help diagnose diseases when they are 

trained with the appropriate data (Javed Mehedi Shamrat et al., 2020). Various 

machine learning models have been developed to predict risk levels in heart disease. 

Most of these approaches use publically available datasets for model training and 

evaluation. These datasets have increased the efficacy of machine learning-based 

predicting approaches and provided new research paradigms for academics to 

construct cutting-edge algorithms for forecasting heart disease risk. Such datasets 

incorporate various statistical facts based on risk factors and the level of the patient’s 

disease. Pre-processing is essential when constructing a predicting approach for heart 

disease because the available clinical datasets are redundant and inconsistent (Amin et 
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al., 2019). Furthermore, the dimensionality reduction and disease prediction stage is 

focused on increasing the capacity of heart disease prediction algorithms. In a detailed 

manner, the characteristics of forecasting algorithms that directly influence the quality 

of the solution technique while solving these challenges are the motivational factors 

for the conducted research. 

Also, this research has focused on various challenges to improve the 

effectiveness of a disease prediction approach. Even though the Gated Recurrent Unit 

is considered one of the most prevailing techniques in resolving different categories of 

disease prediction issues, however, there are some deficiencies in the standard GRU 

model that need to be addressed by constructing an approach that comes up with 

problem-independence and high resolution for these difficult problems. Like other 

disease prediction models, GRU has also executed the heart disease prediction 

assignment, which involves three main phases: extraction of the feature, reduction of 

the feature, and finally, prediction (Lu et al., 2019). For feature reduction, the Chi-

square feature selection method is commonly used in certain scenarios due to its 

specific advantages like independence assumption, feature relevance to target variable, 

univariate analysis, computational efficiency and suitability for categorical data or 

discrete variables. 

The first deficiency in the standard GRU model is that dimensionality 

reduction in data according to the input is beyond its capacity, regardless of the 

application (Hao et al., 2019). Because of this deficiency, the approach has become 

unable to collect the intricate points necessary for obtaining relevant information. 

Thus, the disease prediction problem is solved in a low-quality manner. 

Second, the disadvantage was discovered based on experimentation to 

overcome the slow convergence rate issue in traditional GRU architecture in resolving 

heart disease prediction problems. The core cause of this inadequacy is the execution 

of two different functionalities of the update gate simultaneously during the training 

phase. Breaking down the functionality of the update gate into two parts to overcome 

the cohesion problem in the standard GRU model will enhance the model’s learning 

time. Cohesion problem refers to the measure of how closely the responsibilities of a 

module or component are related to each other. It indicated the degree to which the 

functions or operations within a module or class are interrelated. A cohesion problem 

arises when a module or component is responsible for multiple unrelated tasks or has 

low cohesion, meaning that its responsibilities are not closely related.  
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