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ABSTRACT 

Categorical data clustering is still an issue due the complexities of measuring the 

similarity of data. Unlike the numerical data, the categorical data contains the attributes 

which do not have any natural order. Distance measure-based technique such as k-

mean cannot be executed straightforwardly on the categorical attribute. Fuzzy k-modes 

and its improvement likes Hard k-modes, Ng’s k-modes, He’s k-modes, Initialization 

k-modes, Fuzzy k-modes, Hard and Fuzzy Centroid were proposed to avoid the 

limitation of k-mean  handling the categorical data. The  Grade of Membership (GoM) 

and Fuzzy k-Partition (FkP) were proposed as a parametric-based to improve the Purity  

and accuracy. However, these clustering techniques still produce clusters with weak 

intra-similarity and low Purity . Moreover, converting categorical attributes into binary 

values makes complexities be high. On the other hand, categorical data have 

multivalued attribute that can be represented as a multi soft set and can be assumed 

following a random sample multivariate multinomial distribution. This study proposes 

a clustering technique based on soft set theory for categorical data via multinomial 

distribution function. The data is represented as multi soft  set where every object in 

each soft set has probability. The probability of each object is calculated by the cluster 

joint distribution function following the multivariate multinomial distribution 

function. The experiment results show that the proposed technique has better 

performance cluster stability in term of Dunn Index. It has improved the error mean of 

the estimation parameters up to 24.29 % and 2.24%,  reducing the complexity to 

73.75% and processing times up to  92.96%, Rank Index up to 0.8850 and Purity  

0.9197.  
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ABSTRAK 

 

Pengelompokan data kategori masih menjadi isu kerana kerumitan dalam mengukur 

persamaan data. Tidak seperti data berangka, data kategori mengandungi atribut yang 

tidak mempunyai sebarang susunan semula jadi. Teknik berasaskan ukuran jarak 

seperti k-mean tidak boleh dilaksanakan secara langsung pada atribut kategori. Fuzzy 

k-modes dan penambahbaikannya seperti Hard k-modes, Ng's k-modes, He's k-modes, 

Initialization k-modes, Fuzzy k-modes, Hard dan Fuzzy Centroid dicadangkan untuk 

mengatasi kelemahan k-mean mengendalikan data kategori. Grade of Membership 

(GoM) dan Fuzzy k-Partition (FkP) dicadangkan sebagai teknik berasaskan parametrik 

untuk meningkatkan kemurnian dan ketepatan. Walau bagaimanapun, teknik 

pengelompokan ini masih menghasilkan kelompok dengan intra-kesamaan yang 

lemah dan kemurnian yang rendah. Lebih dari itu, penukaran atribut kategori ke dalam 

nilai binari membuat pengiraan lelaran menjadi kompleks. Sebaliknya, data kategori 

mempunyai atribut berbilang nilai di mana ia boleh diwakili sebagai set berbilang 

lembut dan boleh diandaikan berikutan taburan sampel rawak multinomial 

multivariate.  Oleh itu, dalam kajian ini, teknik pengelompokan berdasarkan teori set 

lembut untuk data kategori melalui fungsi pengedaran multinomial dicadangkan.  Data 

diwakili sebagai set berbilang lembut di mana setiap objek dalam setiap set lembut 

mempunyai kebarangkaliannya. Kebarangkalian setiap objek dikira oleh fungsi 

taburan bersama kelompok berikutan fungsi taburan multinomial multivariat. Hasil 

pengujian eksperimen menunjukkan bahawa teknik yang dicadangkan mempunyai 

kestabilan kelompok lebih baik dari segi indeks Dunn. Ia juga telah meningkatkan min 

ralat parameter anggaran sehingga 24.29% dan 2.24%, mengurangkan kerumitan 

komputeran sehingga 73.75% dan masa pemprosesan sehingga 92.96%, Rank Index 

sehingga  0.8850 dan  kemurnian sehingga 0.9197.  
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CHAPTER 1 

INTRODUCTION 

1.1  Research background 

Data clustering is the task of identifying groups or clusters of data instances so that 

instances in the same cluster are similar to each other in comparison to those in 

different clusters (Goncalves & Lourenco, 2019; McLachlan, Rathnayake, & Lee, 

2020). It can be defined as a process of partitioning a given data set of multiple 

variables into groups. Clustering also serves as an important step in exploratory data 

mining, where the natural affinity of the data instances at hand can be revealed and 

utilized. Numerous branches of research and engineering have used clustering, 

including earth science, life science, social science, information science, medical 

science, policy, and decision-making. Additionally, it is adaptable to the preliminary 

stages of other research areas and applications, including bioinformatics, collaborative 

filtering, customer segmentation, data exploration, data summarization, dynamic trend 

detection, information retrieval, market basket analysis, medical diagnostics, 

multimedia data analysis, social network analysis, text mining, and web analysis             

( Soppari & Chandra, 2020; Wu & Zhang, 2020; Thrun & Stier, 2021). 

Based on the membership of the data item (belongingness) in a cluster, the 

methods are again classified into hard and fuzzy clustering methods ( Mrudula & 

Reddy, 2019; Gupta & Das, 2022). Any clustering method which produces clusters 

such that each data item categorically belongs to a single cluster is called the hard 

clustering method.  In other words, hard clustering is when each data point is uniquely 

assigned to one and only one cluster ( Carvalho et al., 2018; Khandaker, Hussain, & 

Ahmed, 2019; Vardhan, Sarmah, & Das, 2020). In fuzzy clustering, each data item 
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belong to different clusters with some membership in each cluster ( Wu et al., 2019; 

Pinheiro, Aloise, & Blanchard, 2020).  

Starting with a data set as input, the clustering process groups related data 

points into clusters until all the data points are grouped. A similarity/distance metric is 

used to determine the data points similarity. The first clustering methods such as k-

mean, fuzzy c-mean, focus on numerical data by using derived concepts from statistics 

and geometry. Since the real-world data in most cases involves categorical rather than 

numerical values due to changing needs and time, existing clustering techniques have 

been restricted to numeric data exclusively (Saxena & Singh, 2016). Given that some 

measurements can identify structural characteristics, the clustering of numerical data 

in continuous space has been thoroughly explored during the past few decades. In 

contrast, due to the attribute value in the discrete domain, it is challenging to determine 

the structural information of categorical data immediately (Zhu & Xu, 2018). One of 

the structural information of categorical data is the multinomial distribution function 

(Chattamvelli & Shanmugam, 2020).  

Categorical data is different from numeric data in the sense that it groups the 

data into categories and not any numeric values. Numerous real-world applications 

regularly use categorical data, including medical data and retail purchase transactions. 

For instance, categorical variables like nationality, gender, occupation, level of 

education, marital status, and smoking status are included in medical data. Retail 

purchase transactions include product categories, customer kinds, and locations. ( Zhu 

& Xu, 2018; Dinh, Huynh, & Sriboonchitta, 2021). Recently, the research on 

categorical data clustering has also gained much attention (Zhu & Xu, 2018) and 

applied in the real case study such as social science, business, marketing, and finance 

(Beck et al., 2021; Herrero & Villar, 2021; Holden & Hampson, 2021; Kim 2022), 

healthcare and medical science ( Mosia & Joubert, 2020; Coombes et al., 2021), and 

computer science (Cheng, Wang, & Ma, 2019).  In social science, intelligent crime 

analysis makes it possible to find areas with high rates of criminology and illegal 

activity through clustering (Phillips & Lee, 2011). In Chicago, more than 30,000 

people's travel patterns are examined. The investigation looked at the people’s innate 

daily activity patterns and the variety of their daily activities, identified clusters of 

individual behaviors, and revealed information about their socio-demographics (Jiang, 

Ferreira, & González, 2012). The goal of clustering in business, marketing, and finance 

is to group the top tourist locations according to the expansion of the key tourism 
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metrics  (Claveria & Poluzzi, 2017) which permits identifying highly desirable 

destinations. In another application, customer turnover is a serious issue that might 

impact the telecom sector. In actuality, keeping current clients will have a less of an 

economic impact than recruiting new ones (Amin et al., 2017). The clustering 

approach, also known as cluster alarms, is used in the healthcare and medical research 

disciplines to assess and locate disease zones. Finding these diseased areas enables 

effective resource allocation for health control and prevention (Paul & Hoque, 2010). 

In computer science, the clustering approach is used to examine data streams in web 

applications (online social networks, blogs, and wikis), allowing for target marketing 

and group segmentation for electronic commerce (Chen & He, 2016). Clustering in 

cyber security can discover abnormalities, intrusions, and harmful information, 

allowing for the classification of both legitimate and malicious network traffic (Husak 

et al., 2019).  

The data containing categorical attributes pose some challenges to the existing 

clustering methods due to the absence of natural order, existence of subspace clusters, 

and conversion of categorical to numeric data. The traditional similarity measures are 

based on the co-occurrence of attribute values. Some others like the Jaccard 

Coefficient and Cosine similarity can even define similarity by seeing whether two 

attribute values occur together for any data point. If the attributes are not naturally 

ordered like in categorical data, the similarity between data points cannot be measured 

through the existing measures. Categorical data, being high dimensional, fail to cluster 

data in all dimensions and are limited to a certain number of dimensions. The only 

possible approach initially for categorical data clustering was to convert it into 

equivalent numeric form. There are a number of categorical data clustering techniques 

that have been developed. Huang (1998) proposed the k-modes clustering method that 

removes the numeric-only limitation of the k-means algorithm. However, no one 

approach can produce the optimal results across all data sets such as Link-Based 

cluster Ensemble, ROCK: A Robust Clustering Algorithm, Top-Down Parameter Free 

Clustering (Kim, Lee, & Lee, 2004). To improve the efficiency of fuzzy k-modes, 

(Kim, Lee, & Lee, 2004) proposed a technique called fuzzy centroids technique. Its 

non-parametric techniques are based on clusters least sum of squared errors. This 

selection implies, in essence, the assumption of data organized into spherical clusters  

where it is make low Purity  (Bryant & Williamson, 1978; Yang, Chiang, Chen, & Lai, 

2008; Chatzis, 2011).  
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The clustering process was performed using a distance metric, such as the 

simple matching dissimilarity measure (Hamming distance) for categorical clustering. 

The distance often results in clusters with weak intrasimilarity; thus, lower either 

accuracy or Purity  will be obtained (Hsu, Chen, & Su, 2007). Historically, one of the 

most intuitive methods used for categorical clustering was to convert the categorical 

attributes into binary values using 0 or 1 to indicate whether the corresponding 

modality is absent or present in the observation. Thus, this method was inefficient due 

to the high dimensionality of the data sets to be generated. The idea of co-occurrences 

between attributes and pairs defining a cluster and subspace algorithm locates clusters 

in various subspaces of the data set are the foundations of the numerous different 

clustering algorithms for categorical data that have been discovered to solve the 

problem from a different perspective. Finding a good partition in an unsupervised 

learning process requires clustering a lot of data, which is a challenging challenge  

attempting to minimize similarity between things in separate clusters while the 

maximizing similarity between objects in the same cluster without any previous 

information. The currently used category clustering method has numerous drawbacks 

due to temporal complexity; working with a lot of dimensions and data points can be 

challenging (Chen, & Lai, 2008). Yang et al (2008) proposed Fuzzy k-partititon (FkP) 

algorithm, a parametric technique based on the likelihood function of multivariate 

multinomial distributions. It improves the Grade of Membership (GoM) model for 

categorical data analysis proposed by Woodbury & Clive (1974). The FkP also can be 

referred as a fuzzy-based clustering algorithm for categorical data. However, almost 

all fuzzy categorical data clustering algorithms mentioned above represent data set in 

binary values. Moreover, in FkP algorithm, the maximized parameter of the 

classification likelihood function in the same categories always has the same 

probability value (Naouali et al., 2020). Although the GoM and FkP model is a good 

analysis tool for categorical data clustering, the algorithms have complex iteration 

calculations with high computational time. This indicates that the techniques that does 

not suffer from high computational time and low clusters Purity  is needed.  

The converted values are arbitrary and seem to no use beyond using it as a 

convenient label for a particular value. The reason behind the same is that each value 

in a categorical attribute represents a separate logical concept and therefore can neither 

be meaningfully ordered nor can be manipulated the way numbers could be (Saxena 

& Singh, 2016).  In probability theory and statistics, categorical data can be assumed 
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to follow the random multivariate multinomial distribution function (Traylor, 2017; 

Chattamvelli & Shanmugam, 2020). This distribution can be considered as a 

generalization of the binomial distribution with two categories. It gives the joint 

probability of occurrence of multiple events in E independent trials.  For multivariate 

categorical data, a standard parametric model used in latent class clustering is a locally 

independent product of multinomial (Chattamvelli & Shanmugam, 2020). Examples 

include the outcomes of elections for multiple political parties, the spread of epidemics 

(or deaths caused by them) among various ethnic groups, the inclusion of stocks in 

investment portfolios, accidents involving various vehicle types (cars, buses, and 

trucks), claims received under various types of actuarial sciences, and the types of 

books (such as fiction, novels, stories, poems, and science) that patrons check out from 

the library. Bacteriologists use it to simulate microbe counts by type in randomly 

scattered colonies and by geologists for soil analysis. Similarly, civil engineers create 

buildings that can survive sporadic occurrences like earthquakes, floods, strong winds, 

tornadoes, and fires. These depend on the structure's location, of course. Multinomial 

distribution can be used to calculate the likelihood of structural damage from numerous 

causes if the relevant probabilities are known from earlier data. (Chattamvelli & 

Shanmugam, 2020).  

On the other hand, categorical data have multi-valued attribute that can be 

represented as a multi soft  set (Herawan, Deris, & Abawajy, 2010; Khan et al., 2018; 

Pardasani, 2018). The theory of soft set proposed by Molodtsov (D. Molodtsov, 1999) 

is called elementary neighborhood systems that it is free from the inadequacy of the 

parameterization tools, like in the theories of fuzzy set, probability and interval 

mathematics.  In recent years, research on soft set theory has been active, and great 

progress has been achieved, including the works of fundamental soft set theory 

(Akram, Adeel, & Alcantud, 2019;  Liu et al., 2019; Aziz-ul-Hakim et al., 2021; Kar 

& Dutta, 2021),  association rule (Feng et al., 2016; Gupta & Rai, 2017; Feng et al., 

2020; Jia & Zhang, 2021), decision making (Manna, Basu, & Mondal, 2020; Tao et 

al., 2020; J. Yang & Yao, 2020) and handling incomplete data ( Wen, Chang, & Lai, 

2020; Kong et al., 2021). It is a soft computing tools for data mining that has much 

use in the fields of business, health, education, agriculture, and many more (Kottam & 

Paul, 2020). In clustering problem, soft set theory has been applied in education 

(Saedudin et al., 2017), web mining (Sutoyo et al., 2019), and the environment (Tri et 

al., 2021). 
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1.2  Problem statement 

The clustering algorithms developed for managing numerical data cannot directly be 

used to cluster categorical data (Wei et al., 2019).  Thus, the challenge of categorical 

data clustering is more than the numerical. There are various algorithms have been 

introduced for clustering categorical data. Kim et al ( 2004) proposed using the hard 

and fuzzy centroids technique to upgrade the efficiency of fuzzy k-modes. The use of 

simple matching dissimilarity distance obtains the weak intra-similarity (Hsu et al., 

2007) and make either accuracy or Purity  will be low. Another problem in categorical 

data is that there is no inherent distance measure object to another object. Since 

categorical data is regularly watched as tallies coming about from a settled number of 

trials in which each trial makes one determination from a prespecified set of categories, 

the categorical data can be assumed to from trial independent following the 

multinomial distribution. Thus, the parametric technique is more suitable for 

categorical data (Morris, Raim, & Sellers, 2020). For categorical data, a standard 

parametric model used in latent class clustering is a locally independent product of 

multinomial. Moreover, the categorical data can be assumed following a random 

sample multivariate multinomial distribution.  

Yang et al (2008) proposed Fuzzy k-partititon (FkP) algorithm, a parametric 

technique based on the likelihood function of multivariate multinomial distributions. 

It improves the Grade of Membership (GoM) model for categorical data analysis 

proposed by Woodbury & Clive (1974). However, the algorithms is still need complex 

iteration calculations with high computational time. It is caused the FkP and GoM need 

to convert the categorical data into binary data.  On the other hand, categorical data 

have multi-valued attribute that can be represented as a multi soft . The multi soft  set 

used for multi-valued attribute has advantages in representing the categorical data 

without the need to be converted into binary values (Herawan, Deris, & Abawajy, 

2010; Khan et al., 2018). Thus, this study propose a clustering technique based on soft 

set theory for categorical data via multinomial distribution.  
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1.3  Research question 

Having discussed the problem statement, the research questions that guided this 

research are as follows: 

(i) How to implement the multinomial distribution function and soft set for 

categorical data clustering problem? 

(ii) How do the multinomial distribution function and soft set work for categorical 

data clustering problem? 

(iii) How is the multinomial distribution function on soft set performance compared 

to the baseline techniques? 

1.4  Research objective 

This research embarks on the following objectives: 

(i) To propose a clustering technique for categorical data using multi soft set and 

multinomial distribution function in :  

a. reducing the computational complexity and time response, and  

b. improving the Purity  of cluster.  

(ii) To evaluate proposed technique performance in term of computational 

complexity, Mean Square Error of estimation parameter, Rank Index, Purity , 

Dunn Index, stability of creating number of cluster, and time response. 

1.5  Scope of study 

The scope of this research falls within the hard portioning type of clustering for 

categorical data using soft set and multinomial distribution function. The data is 

splitting into multi soft set and then the probability is calculated using a multinomial 

distribution function. The proposed technique will be validated by comparing results 

with the baseline techniques such as Hard Centroid, Fuzzy Centroid,  GoM model and 

Fuzzy k-Partition with the performance measurement criteria of computational 

complexity, Mean Square Error of estimation parameter, Rank Index, Purity , Dunn 

Index, stability of creating number of cluster, and time response. The artificial data set, 

benchmarks data set and primary data set are used to validate the techniques. The 
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artificial data set is generated randomly from the mixture distribution function. The 

benchmarks data set taken from the University of California Irvine Machine Learning 

Repository (UCI) consists of seven data involving zoo, soybean, balloon, tic-tac-toe, 

monk, spect and car data sets. The primary data set is Rapid Visual Screening (RVS) 

data set collected at Kulonprogo, Yogyakarta.  

1.6 Thesis outline 

This research thesis comprises of six chapters including Introduction and Conclusion 

chapters. The followings are synopsis of each chapter.  

Chapter 1: Introduction. Apart from providing an outline of the thesis, this chapter 

contains an overview of the research background, problem to be solved, objectives to 

be achieved, scope, aim, and outcome of the study.  

Chapter 2: Literature Review. This chapter explains the basic of information system, 

Soft Set Theory, multinomial distribution function, reviews some of the work on 

categorical data clustering techniques and several indexes to measure the goodness of 

cluster results.   

Chapter 3: Research Methodology. This chapter discusses the research methodology 

used to carry out the study systematically. The research phase involves literature 

review, mathematical modelling, model solving, data collection and performance 

analysis. The three data sources used for experiment are artificial data, secondary and 

primary data.  The experiment is conducted measurement on computational 

complexity, estimation parameter, cluster analysis  (Rank Index, Purity , Dunn Index) 

and time response. 

 Chapter 4: Hard Clustering using Soft Set based on Multinomial Distribution 

Function. This chapter explains the proposed technique. The mathematical modeling 

of the proposed technique is presented by assuming the categorical data following 

multivariate multinomial distribution function where each attribute decomposes the 

object into multi soft  set. The objective function is solved by Lagrange multiplier to 

find the optimum solution. The manual calculation is given as an example of how the 

technique work.  

Chapter 5: Results and Analysis. The performance analysis consists of measurements 

: computational complexity, estimation parameter, cluster analysis and time response. 
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The computational complexity is analyzed mathematically. The estimation parameter 

estimates the parameter of the artificial data. The cluster analysis consists of internal 

and external using Purity , Dunn Index, and  Rank Index.  

Chapter 6: Conclusion and Future work. The contributions of the proposed technique 

are summarized, and the recommendations are given for further continuation of works. 
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