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ABSTRACT 

Stochastic optimization in financial portfolio investment is a challenging task. In this 

thesis, a computational approach is proposed to solve the financial portfolio 

optimization problems. For this purpose, the stochastic gradient descent (SGD) 

method is overviewed, and its recent variant, the adaptive moment estimation (Adam)  

approach, is investigated. Notice that the updating rule in the Adam algorithm consists 

of the component of the second moment of past gradients, which is also known as the 

standard deviation of gradients. Hence, in our study, the computational algorithm 

mainly focuses on the SGD and Adam algorithms, and the standard error (SE) of 

sampling of the past gradients is added to the updating rule. So, the convergence rate 

can be fastened with fewer iteration numbers. On this basis, the proposed algorithm is 

known as the AdamSE algorithm. On the other hand, the application of the SGD, 

Adam and AdamSE algorithms to financial portfolio optimization models for the 

Employees Provident Fund (EPF) is examined. Here, a simulated mean-variance 

model is defined by using the parameters of the expected return and the covariance 

matrix from the classical mean-variance model, and the performance of algorithms is 

observed. Then, a mean-value at risk (mean-VaR) model is introduced, and the 

standard error of sampling of past gradients is associated with the AdamSE algorithm 

for obtaining different iteration steps toward the optimal solution. Next, a Black-

Litterman model is studied, and different types of gradients in the measure of the 

central tendency of mean, median and mode gradients are employed in the AdamSE 

algorithm to express the efficiency of the algorithm. Accordingly, through these 

financial portfolio optimization models, the features of the AdamSE algorithm are 

demonstrated. Therefore, the efficiency of the proposed algorithm is proven. In 

conclusion, the practical application of these SGD algorithms to financial portfolio 

optimization problems is verified. 
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ABSTRAK 

Pengoptimuman berstokastik dalam pelaburan portfolio kewangan adalah tugas yang 

mencabar. Dalam tesis ini, satu kaedah pengiraan dicadangkan untuk menyelesaikan 

masalah pengoptimuman portfolio kewangan. Untuk tujuan ini, kaedah penurunan 

kecerunan stokastik (SGD) ditinjau secara keseluruhan, dan varian terbarunya, kaedah 

anggaran momen penyesuaian (Adam), dikaji. Diperhatikan bahawa peraturan 

pengemaskinian dalam algoritma Adam terdiri daripada komponen momen kedua 

kecerunan lalu, yang juga dikenali sebagai sisihan piawai kecerunan. Oleh itu, dalam 

kajian ini, algoritma pengiraan tertumpu terutamanya pada algoritma SGD dan Adam, 

dan ralat piawai (SE) pensampelan kecerunan lalu ditambahkan pada peraturan 

pengemaskinian. Jadi, kadar penumpuan boleh dipertingkatkan dengan nombor lelaran 

yang lebih sedikit. Berasakan ini, algoritma yang dicadangkan dikenali sebagai 

algoritma AdamSE. Sebaliknya, penggunaan algoritma SGD, Adam dan AdamSE 

terhadap model pengoptimuman portfolio kewangan untuk Kumpulan Wang 

Simpanan Pekerja (KWSP) diperiksa. Di sini, model min-varians simulasi ditakrifkan 

dengan menggunakan parameter pulangan yang dijangkakan dan matriks kovarians 

daripada model min-varians klasik, dan prestasi algoritma diperhatikan. Kemudian, 

model nilai min berisiko (min-VaR) diperkenalkan, dan ralat piawai pensampelan 

kecerunan lalu disatukan dengan algoritma AdamSE untuk mendapatkan langkah 

lelaran yang berbeza ke arah penyelesaian optimum. Seterusnya, model Black-

Litterman dikaji, dan pelbagai jenis kecerunan dalam ukuran kecenderungan memusat, 

iaitu min, median dan mod kecerunan digunakan dalam algoritma AdamSE untuk 

menyatakan kecekapan algoritma. Sehubungan itu, melalui model pengoptimuman 

portfolio kewangan ini, ciri-ciri algoritma AdamSE ditunjukkan. Dengan itu, 

kecekapan algoritma yang dicadangkan terbukti. Kesimpulannya, penggunaan 

praktikal algoritma SGD ini untuk masalah pengoptimuman portfolio kewangan 

disahkan. 
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CHAPTER 1 

INTRODUCTION 

This chapter gives a brief research background to the study. The problem statement of 

the study is described, and the research objectives are established. In addition, the 

scope and significance of the study are mentioned. Later, the structure of the thesis is 

outlined, and a summary of the chapter is given. 

1.1 Research background 

Finance is generally defined as the art and science of managing wealth (Paramasivan 

and Subramanian, 2009). The impact of finance ranges from an individual to a 

community and from a country to other countries worldwide. Therefore, finance 

constantly interacts with economics in the daily activities involving money usage. 

Furthermore, financial portfolio optimization is one of the most common financial 

investment problems encountered by financial practitioners (Bailey and Prado, 2013). 

Here, a financial portfolio refers to a set of financial assets (Rutkauskas and 

Stankevičiene, 2003), for example, cash, stocks, bonds, mutual funds, and bank 

deposits. Thus, financial portfolio optimization aims to make the portfolio superior to 

other portfolios based on several criteria, such as minimum risk and maximum return 

(Chin, Chendra and Sukmana, 2018).  

In the 1950s, Harry Markowitz developed the first mathematical diversification 

model for portfolio optimization. Since then, the mathematical model has been known 

as the Markowitz model in financial investment. In the Markowitz model, the 

portfolio's return is given by the portfolio's expected return and the variance of its 

return measures the risk of the portfolio. On this basis, the Markowitz model is also 
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called the mean-variance model. Nonetheless, Gencay and Selcuk (2004) argued that 

variance is not a good tool to measure the risk of a portfolio. They proposed a new 

measurement method for a portfolio's risk, which is popularly known as the value at 

risk (VaR). Hence, variance in the mean-variance model can be replaced by VaR to 

form the mean-VaR model.  

In addition, stock prices are influenced by the company's action plans and 

policies, where rising and dropping stock prices are uncertain and cannot be perfectly 

beaten. Therefore, estimating stock prices using historical stock price data is less 

accurate in predicting stock prices in the future. Investors' perceptions of current stock 

performance are also crucial in predicting stock prices. Therefore, another portfolio 

optimization model, namely the Black-Litterman model (Black and Litterman, 1991), 

was established to combine investor views toward the trend of stock prices with 

historical data on stock prices.  

On the other hand, in solving stochastic optimization problems (Ge et al., 2015), 

the stochastic gradient descent (SGD) method is the fundamental optimization 

algorithm among stochastic optimization techniques. The SGD method is an imprecise 

but useful stochastic optimization algorithm (Chollet, 2021), and many variants of the 

SGD method have been developed. Recently, the adaptive moment estimation (Adam) 

approach is one of the most popular iterative algorithms (Sun, 2020) among the SGD 

variants. Practically, the effectiveness of optimization algorithm is determined by two 

metrics. The first metric is the convergence speed that presents the iteration process of 

reaching the global optimum. The second metric is the generalization that shows the 

algorithm performance in dealing with new data.   

Since the nature of portfolio risk involves randomness and uncertainty, 

financial portfolio optimization models shall be solved using the SGD method for a 

better outcome. Hence, our main aim in this thesis is twofold. The first is to improve 

the Adam algorithm, especially the convergence speed, and the second is to apply the 

SGD method, Adam and the improved algorithm to financial portfolio optimization 

models. So, the application of the SGD methods in handling financial portfolio 

optimization problems can be explored and verified. Specifically, the financial 

portfolio optimization model for the Employees Provident Fund (EPF) is constructed 

for demonstration in the study.   
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1.2 Problem statement 

In a financial portfolio optimization problem, mean and variance are two essential 

elements measured from past historical stock prices of a portfolio. The portfolio 

expected return presents the reward desired to be received from the portfolio 

investment. While, the variance reveals the risk of the portfolio, which is the deviation 

of the return from the expected level. As the stock market is uncertain and random, the 

stock market will not be perfectly beaten, and the movement of stock prices cannot be 

accurately predicted in the following period. Thus, the volatility of stock prices can 

cause investors to receive losses. Although many investors are risk inversion oriented 

whose prefer lower returns with known risks and understand that higher risk gives a 

higher return, they look for low risk and high reward from financial portfolio 

investment. So, the issue of losses in financial portfolio investment always happens.    

 The usefulness of the mean-variance model can provide some insights to 

investors, for example, to minimize the portfolio risk, maximize the portfolio return, 

and allocate portfolios optimally. The stock markets are efficient, and investors can 

only access the available information, such as the expected return, variance, and 

covariance of securities. With the formulation of the mean-variance model, investors 

minimize the risk of portfolios at a level of return given. On this basis, an optimal 

portfolio is determined upon the optimal weights that are resulted from solving the 

mean-variance model. However, the calculation of the mean and variance based on the 

past historical stock prices that are applied in the financial portfolio model does not 

indicate the current movement of the stock prices. Hence, using deterministic 

optimization techniques to solve financial portfolio problems only gives an ideal 

optimal solution. These deterministic techniques cannot provide a satisfactory solution 

that reflects the uncertainty and randomness in financial portfolio optimization. 

 In addition, stochastic optimization of financial portfolio problems is a realistic 

resolution, considering the mean and variance of the portfolio in dealing with 

uncertainty and randomness in the financial portfolio model. Some stochastic 

approaches, like stochastic programming, genetic algorithm, and random walk, are 

commonly used for solving financial portfolio optimization problems (Cornuejols and 

Tutuncu, 2006; Rani, 2012). These approaches give the optimal solution when the 

optimality conditions are satisfied. However, the computational process is complex, 
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and some calculation stages, which are stochastic gradient and solution updating stages, 

must be considered before reaching the optimal solution to give the investment 

decision.  

Due to the rapid development of SGD methods, it has been argued that SGD 

methods might provide more accurate solutions in financial portfolio optimization than 

other existing stochastic optimization methods. Although the SGD and Adam 

algorithms are effective in dealing with machine learning problems, the slow 

convergence of the iterative process due to the existence of random disturbances is the 

weakness of the algorithms. According to (Keskar and Socher, 2017), the learning rate 

of the Adam approach is low at the convergence stage, which affects the effectiveness 

of convergence and slows down the solution process. Thus, this drawback shall be 

further improved. 

Therefore, the motivation of this thesis is to propose an efficient computational 

algorithm under a stochastic environment for solving financial portfolio optimization 

problems. The sampling error from the sampling theory is employed in the solution 

method process for convergence. Past historical stock prices for the top 30 equity 

holdings in the EPF are used to construct the portfolio optimization models. We expect 

to provide the optimal decision for financial portfolio investment problems for the EPF 

at the end of our study. 

1.3 Research objectives  

The essential variables of financial portfolio optimization model are the expected 

return and variance of the expected return, which is also known as the risk. Since 

portfolio risk is uncertain and randomly changing, portfolio uncertainty should be 

considered in risk estimation. Moreover, the effectiveness of the SGD method in 

solving stochastic optimization problems has been well-defined as a practical method 

in engineering and sciences. Therefore, our primary goal is to propose an efficient 

computational algorithm with better convergence by improving the SGD and Adam 

algorithms. Later, the application of this computational method to financial portfolio 

optimization problems is further explored. With this, the following research objectives 

are established. 

(a) To propose an efficient computational algorithm based on the stochastic 

gradient for solving financial portfolio optimization problems. 
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(b) To improve the updating rule in the Adam algorithm using the standard error 

from the sampling theory for accelerating the convergence rate and reducing 

iteration numbers.  

(c) To verify the application of the algorithms of SGD, Adam and the proposed 

algorithm for solving financial portfolio optimization problems through 

algorithm performance comparison. 

(d) To demonstrate the features of the proposed algorithm with different sample 

sizes and types of past gradients in terms of mean, median and mode gradients. 

1.4 Scope of study 

This study covers the application of the algorithms of SGD, Adam, and the proposed 

algorithm to financial portfolio optimization problems. The proposed algorithm is 

equipped with the standard error, one of the sampling theory errors. So, this standard 

error will improve the Adam algorithm, and the proposed algorithm is known as the 

Adam with standard error (AdamSE) algorithm. In our study, three financial portfolio 

optimization models, namely the mean-variance model, the mean-VaR model, and the 

Black-Litterman model, for the EPF, are constructed. Hence, ten assets from the top 

30 equity holdings of the EPF were selected on 31 March 2020, as shown in Table 1.1. 

The weekly historical data of stock prices for these ten assets, which are from 4 January 

2015 to 29 December 2019, and available at Investing.com, was chosen.   

 
Table 1.1: Ten assets from EPF 

No. Assets from EPF 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

IJM Corporation Berhad 
Bermaz Auto Berhad 
Yinson Holdings Berhad 
Malaysia Building Society Berhad 
Kuala Lumpur Kepong Berhad 
Malaysian Resources Corporation Berhad 
Globetronics Technology Berhad 
Axiata Group Berhad 
Malaysia Airports Holdings Berhad 
Tenaga Nasional Bhd. 

1.5 Significance of study 

Stochastic optimization methods with the stochastic gradient provide practical 

applications in engineering and sciences. The rapid development of computational 
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algorithms brings the SGD method to actively solve optimization problems in random 

and uncertain environments. In applying the SGD and Adam algorithms, the algorithm 

convergence will be mainly concerned so that better algorithm efficiency is guaranteed. 

For this reason, in our study, an efficient computational algorithm is proposed by 

adding the standard error of sampling theory to improve the updating rule of the Adam 

algorithm, in turn accelerating the convergence rate with a reduction of iteration steps. 

This computational algorithm is known as the AdamSE algorithm. Moreover, the 

application of SGD, Adam and AdamSE algorithms to financial portfolio optimization 

problems is illustrated.  

 Therefore, in our study, some significant contributions are claimed as follows, 

(a) Applying the standard error of sampling to improve the convergence rate of the 

Adam algorithm. For doing this, the sample of past gradients is considered, and 

the standard error is calculated. After that, the standard error replaces the 

standard deviation in the Adam algorithm to be the component in the updating 

rule. With this, the number of iterations of the AdamSE algorithm is 

significantly reduced.  

(b) Generating some samples of past gradients to observe the performance of the 

AdamSE algorithm. Through sampling, the standard error for some samples is 

calculated, and the convergence rate of the AdamSE algorithm is recorded. 

Hence, the iterative algorithm associated with sampling gives significant work 

to the stochastic optimization community.    

(c) Testing the AdamSE algorithm with different types of gradients in terms of 

mean, median and mode of past gradients. This work presents the usefulness 

of the measures of the central tendency in the development of the SGD 

algorithm. Using these types of gradients in the AdamSE algorithm confirms 

brings new insight into stochastic optimization. 

(d) Constructing the financial portfolio optimization models, namely the mean-

variance model, the mean-VaR model and the Black-Litterman model, for the 

EPF. The optimal weights of these models are determined by using the SGD, 

Adam and AdmSE algorithms. Thus, the application of these algorithms to 

financial portfolio optimization problems is verified.       
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1.6 Structure of thesis 

The content of this thesis is outlined as follows. In Chapter 1, the introduction of the 

study is given, where the background of the study is stated. The problem statement 

describes the problem to be resolved in the study, and the objectives of the study are 

then established for handling the problem. In addition, the scope of the study is 

mentioned, and the significance of the study is highlighted. Follow from this, the 

structure of the thesis is presented, and a chapter summary is provided.   

 In Chapter 2, an introduction to the gradient descent approach is given, and the 

development of the SGD method, including its recent variant, namely the Adam 

algorithm, is presented. Then, the basic terminology of the financial portfolio is 

provided. The financial portfolio optimization models, which are the mean-variance 

model, the mean-VaR model and the Black-Litterman model, are reviewed.  

 In Chapter 3, the research framework is provided, and the general optimization 

problem is introduced. The Lagrange function is defined and the first-order necessary 

conditions are derived. The calculation procedure of the SGD, Adam and AdamSE 

algorithms is provided. Besides, the data collection of the historical stock prices of the 

ten stocks for the EPF is displayed in a graphical form.  

In Chapter 4, the mean-variance model for the EPF is studied. The parameters 

of the expected return and covariance matrix are calculated for the classical mean-

variance model. For the purpose of a more reliable solution, these parameters are 

employed to simulate new parameters of the expected mean and covariance matrix, 

and another model, which is called the simulated mean-variance model, is defined. 

Using the SGD, Adam and AdamSE algorithms, the optimal weights and the portfolio 

risk are obtained. The efficient frontier of the portfolio is expressed and the algorithm 

performance is discussed.  

In Chapter 5, the mean-VaR model for the EPF is studied. The concept of the 

VaR is explained and the mean-VaR model is defined. Then, the optimal weights and 

the portfolio risk are obtained by using the SGD, Adam and AdamSE algorithms. To 

highlight the feature of the AdamSE algorithm, some samples of the past gradients are 

considered and the corresponding standard error is computed. The performance of the 

algorithm is observed and discussed.  
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In Chapter 6, the Black-Litterman model for the EPF is studied. Unlike the 

classical mean-variance model, the investors’ views of the portfolio are taken into 

consideration in the Black-Litterman model. The expected return used in the model 

incorporates the market return and required return into the model formulation. Using 

the SGD, Adam and AdamSE algorithms, the optimal weights and the portfolio risk 

are determined. To demonstrate the feature of the AdamSE algorithm, different types 

of gradients in terms of mean, median and mode gradients are considered in the 

algorithm. The performance of the algorithm is compared and discussed. 

In Chapter 7, a conclusion of the study is delivered. The contributions of the 

study are significantly reported, and the achievement of the objectives of the study is 

mentioned. The limitation of the study is pointed out and some recommendations for 

future research are suggested.   

1.7 Chapter summary 

This chapter provided the background of the study, and the problem statement of the 

study. Follow from this, the objectives of the study were established, the scope of the 

study was mentioned, and the significance of the study was expressed. At the end, the 

structure of the thesis was outlined. In the next chapter, a review of the methods used 

and the financial portfolio optimization problems will be conducted.  PTTA
PERP
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, an introduction to gradient descent methods is delivered, where the 

development of the stochastic gradient descent (SGD) method and its recent variant, 

namely the adaptive moment estimation (Adam) approach, are covered. Also, this 

chapter introduces the concept and basic terminology of financial portfolio 

optimization. Moreover, financial portfolio optimization models, including the mean-

variance model, mean-VaR model, and Black-Litterman model, are reviewed. Finally, 

a summary of this chapter is given.   

2.1 Introduction to gradient descent methods 

The gradient descent method is a first-order optimization algorithm that only considers 

the first derivative when updating parameters during iteration. Here, the iteration is 

referred to as the complete process of repeatedly computing gradients and updating 

points. The algorithm calculates the gradient of the objective function at the current 

point and then updates parameters in the opposite direction of the gradient during 

iteration until local minima are reached (Netrapalli, 2019). There are three variants of 

the gradient descent method, which are batch gradient descent, mini-batch gradient 

descent, and stochastic gradient descent. These methods differ in the amount of data 

used to calculate the gradient of the objective function. Often, they have a trade-off 

between the accuracy of parameter updates and the time required to perform the 

updates (Ruder, 2016). 
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2.2 Development of stochastic gradient descent 

Stochastic gradient descent (SGD) is preceded by stochastic approximation (SA), 

which was first described by Robbins and Monro (1951). Then Kiefer and Wolfowitz 

(1952) further explored this approach for a regression function. It is a relatively small 

leap from the Robbins and Monro method to the Kiefer Wolfowitz method, which only 

reframes the problem to reach the SGD approach. This literature statement is widely 

cited as the predecessor of the SGD approach. 

The SGD method drastically simplifies the classical gradient method, iterating 

only one or a small batch of randomly selected samples rather than the entire dataset 

(Andrearczyk, 2017; Roset, 2019). As a result, this approach usually performs the 

computation tasks very quickly. Furthermore, because the SGD method does not need 

to remember examples accessed in previous iterations, it can process the examples 

dynamically in a deployed system (Bottou, 2012). However, due to the frequent update 

of the SGD method, the variance of the objective function is large, and resulting in a 

large fluctuation of the objective function. The fluctuation keeps the SGD method 

overshooting but may make it jump to a new and possibly better local minimum 

(Ishibashi, 2017). 

2.3 Adaptive moment estimation 

The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2015) is a 

combination of the root mean square propagation (RMSprop) algorithm (Muhamedyev, 

2015) and the SGD with momentum (Polyak, 1964). It uses the squared gradients to 

scale the learning rate, as done in the RMSprop algorithm. Also, it takes advantage of 

momentum using the moving average of the gradient instead of the gradient itself, like 

the SGD with momentum. Although the Adam algorithm is one of the best optimizers 

compared with other SGD algorithms, it is not perfect (Liu et al., 2023). It may not 

converge to the optimal solution of objective functions, and the weight decay issue 

may occur. Its advantages include computational efficiency, memory efficiency, 

working well on large data sets, and handling sparse gradients on noisy datasets. 

 In literature, the Adam algorithm is one of the most popular variants of the 

SGD approach (Sun, 2020). The convergence speed of the Adam algorithm is faster 

than the SGD approach. However, the final convergence result is not as good as the 
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SGD approach. A study in (Keskar and Socher, 2017) found that the Adam learning 

rate was too low in the later stage, affecting the effectiveness of convergence. 

Therefore, an improvement in the convergence rate of the Adam algorithm should be 

addressed. Furthermore, the application of the SGD approach and Adam algorithm to 

financial portfolio optimization problems has to be investigated.  

2.4  Portfolio 

From a financial perspective, a portfolio is referred to a group of investment assets 

held by professional institutions, investors or individuals (Zhang, 2011; Mariak and 

Mitkova, 2016). A financial portfolio typically consists of several financial asset 

classes, such as stocks, equities, mutual funds, bonds, and cash equivalents (Gupta et 

al., 2020). Modern portfolio theory (MPT) is the most groundbreaking portfolio 

concept, which improves classical investment models. Unlike classical security 

analysis, MPT shifts its focus from analyzing the characteristics of individual 

investments to determining the statistical relationships between individual securities 

that make up the overall portfolio (Elton and Gruber, 1997). The goal of MPT is to 

select a portfolio of assets whose collective risk is lower than that of any individual 

asset with the concept of diversification at a given expected return (Elton et al., 2014). 

2.5  Risk 

Risk is an important term in portfolio optimization models, and it is referred to the 

uncertainty of an outcome of actions and events, whether positive opportunities or 

harmful threats (Gupta, Sharma and Trivedi, 2016). Risk and uncertainty are often seen 

as synonyms but there is a different meaning to understand. Risk is a situation in which 

the possibility of a possible outcome can be quantified and measured, while 

uncertainty is a situation in which the possibility cannot be measured (Gough, 1988). 

In mathematical terms, a risk is the product of the probability measure of an unwanted 

event and its consequences (Boholm, 2019). In the financial field, a risk is defined as 

the variability of equity owners' net return due to external financing instruments 

(Fogarasi et al., 2015).  
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