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ABSTRACT  

In recent years, there has been much research in designing an inductive wireless power 

transfer system. The main challenge for this technology is the efficiency of the system.  

In designing a Wireless Power Transfer (WPT) system for long-distance applications, 

the gain bandwidth or Q-factor is a factor that should be considered as it affects the 

resonant coupling of the transmitter and receiver pads. An insufficient Q-factor will 

result in weak coupling or possible energy loss due to the attenuation characteristics 

of the environment, such as resistive and radiation losses. However, a system with too 

much Q-factor would cause the resonant coils to be very sensitive to the environment, 

such as temperature, humidity, and human proximity. Since wireless power 

transmission devices use power electronics technology, this technology is also affected 

by environment factors such as temperature and humidity. This research therefore, 

investigates the effect of temperature and humidity in LCL compensation wireless 

power transfer systems as well as study the safety of the magnetic field generated by 

the system. This project was carried out into two distinct phases: the first was a 

simulation analysis for the proposed system using JMAG-Designer software and the 

second phase was an experimental setup based on the simulated system. The hardware 

design was tested on the various temperature and humidity levels to observe the impact 

of the change in efficiency of the system. The results shows that the efficiency of both 

the simulation and experiment are high at 94.8% and 91.7% respectively, when the 

distance is low.  However, as the distance increased, the efficiency decreased to 68.5% 

for simulation and 66.6% for experiment at 10 cm distance. Regarding the temperature 

and humidity setup, the temperature was set between 27-degree Celsius (room 

temperature) and 60-degree Celsius, while the humidity was set between 60% which 

is at room temperature and 99%. The result was showed that temperature and humidity 

have a very small changes on the efficiency of the system, with an error margin of 1%. 

Therefore, it was concluded that the efficiency can only be affected by the distance 

between the coils, load resistance, and frequency value. 
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ABSTRAK  

Dalam beberapa tahun kebelakangan ini, terdapat banyak penyelidikan dalam mereka 

bentuk sistem pemindahan kuasa tanpa wayar (WPT) induktif. Cabaran utama untuk 

teknologi tersubat adalah kecekapan sistem. Untuk sistem (WPT) yang digunakan 

dalam aplikasi jarak jauh, lebar jalur keuntungan atau faktor Q adalah faktor yang 

harus dipertimbangkan kerana ia mempengaruhi gandingan resonan pad pemancar dan 

penerima. Faktor Q yang tidak mencukupi hanya akan mengakibatkan gandingan yang 

lemah atau kemungkinan kehilangan tenaga disebabkan oleh kehilangan gelombang 

sinaran elektromagnet. Walau bagaimanapun, sistem dengan faktor Q yang terlalu 

banyak akan menyebabkan gegelung resonans menjadi sangat sensitif kepada 

persekitaran seperti suhu, kelembapan dan kedekatan manusia. Memandangkan 

peranti WPT menggunakan teknologi elektronik kuasa, teknologi ini turut dipengaruhi 

oleh persekitaran seperti suhu dan kelembapan. Penyelidikan ini mengkaji kesan suhu 

dan kelembapan dalam sistem WPT pampasan LCL serta mengkaji keselamatan 

medan magnet yang dihasilkan oleh sistem. Kerja-kerja ini dibahagikan kepada dua 

peringkat: analisis simulasi untuk sistem yang dicadangkan menggunakan perisian 

JMAG-Designer dan diikuti dengan persediaan eksperimen berdasarkan sistem 

simulasi. Reka bentuk perkakasan akan diuji pada pelbagai tahap suhu dan kelembapan 

untuk melihat kesan perubahan kecekapan sistem. Daripada keputusan tersebut, 

didapati bahawa kecekapan kedua-dua simulasi dan eksperimen adalah tinggi apabila 

jaraknya rendah iaitu masing-masing pada 94.8% dan 91.7%. Walau bagaimanapun, 

apabila jarak semakin bertambah kecekapan berkurangan kepada 68.5% untuk 

simulasi dan 66.6% untuk eksperimen pada jarak 10 cm. Bagi persediaan suhu dan 

kelembapan pula, suhu ditetapkan daripada 27- darjah Celsius kepada 60 darjah 

Celsius, dan kelembapan ditetapkan daripada 60% iaitu pada suhu bilik kepada 99%. 

Hasilnya diperhatikan bahawa suhu dan kelembapan mempunyai perubahan yang 

sangat kecil dengan margin ralat 1% pada kecekapan sistem. Oleh itu, disimpulkan 
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bahawa kecekapan hanya boleh dipengaruhi oleh jarak antara gegelung, rintangan 

beban, dan nilai frekuensi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Electric and electronic appliances are typically powered by a wire that transfers 

electricity [1]. However, this is inconvenient for the following reasons: the incapability 

of moving the equipment while charging, broken cables, the necessity to establish an 

electrical connection during rainy weather conditions, and safety risks. Even though 

some of the equipment use battery for their mobility, there are some limitations with 

the batteries such as capacity, size, and efficiency which make them inconvenient and 

do not solve this limitation [2]. To overcome this limitation wireless power transfer 

(WPT) has been introduced in the past few decades. The benefit of WPT is that it 

transmits power from the primary windings to the secondary windings without any 

mechanical contact. WPT technology is used in various applications such as medical 

implants, mobile phones, and electric vehicles (EV) [3]. 

WPT technique is adopted rapidly in many sectors, including transportation and 

various other fields of approach in which certain parameters vary. For instance, the 

number of coils and their shape, compensation topologies, frequency control, and 

inverter design is being implemented to get the maximum power transfer efficiency 

[4].  

Several approaches are used to build a WPT. They depend on the distance 

between the transmitter and receiver, the operating frequency, and the amount of 

transmitted power [5]. WPT has two types of fields: far-field and near-field. Table 1.1 

shows the distinction between the two types of fields. Near-field WPT systems are 

classified into inductive and capacitive power transfer. The most often-used approach 

is inductive power transfer (IPT), which is based on magnetic induction. The IPT 
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system has made significant contributions in theoretical development and industrial 

implementations for wireless power delivery [6], [7]. Hence, it was used in this 

research. 

Table 1.1: Main differences between far-field and near-field [5] 

WPT Far Field Near Field 

Range Long Short-Mid 

Phenomenon Coupled mode theory Induction theory 

Frequency Mega Hertz Kilo Hertz 

Efficiency Low High 

 

The technique for wireless power transfer is that it eliminates the use of 

traditional wires. Instead, it transfers energy from the power supply to the targeted load 

via air. This technique consists of far-field and near-field transmissions. The far-field 

technique uses systems such as microwave, optical, and acoustic to transfer the energy 

from the source to the load. Whereas the near-field transmission uses electric and 

magnetic fields to transfer energy from the source to the load. It is noteworthy, that 

most of the WPT techniques use a near-field technique, which can be classified into 

two methods: i.e., magnetic induction (IPT) and electrostatic induction or capacitive 

power transfer (CPT) [8]. 

The reliability of electronic systems for operating in all types of environments 

has become a necessity. During operation, electronic components are exposed to a 

variety of stresses, including electrical, thermal, electrostatic discharge (ESD), EMI, 

and others. Temperature and humidity may impact the dependability of operation and 

be one of the causes of electronic component failure. There are numerous research 

articles and initiatives on electronic equipment like transformers and inductor,  because 

thermal heat loss in electronic devices produces unexpected issues in system [10]. 

However, no active research on the effect of temperature and humidity on current WPT 

systems in the market has been done yet. The effect of temperature and humidity 

dissipation of a WPT system device can be minute if the machine deals with low 

power. However, when the system's power and frequencies increase, substantial power 

loss might occur because of the WPT system characteristics (such as proximity effects 

by many turns of wiring, and sensitivity to resonance frequencies). 
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This research proposed and investigated the effect of temperature and humidity 

which could negatively affect the efficiency and performance of any electronics device 

that includes WPT. As well as to model and design a WPT system using JMAG-

designer, and to study the safety limits of the electromagnetic field produced by the 

coupling coil.  

1.2 Problem Statement  

To ensure the capability of energy transfer at longer distances, the resonance coupling 

must depends on a rate determined by the gain-bandwidth (Quality factor) [11]. 

Insufficient Q-factor simply results in weak coupling or possibly loss of energy due to 

the damping nature of the environment including resistive and radiative losses. 

However, too much Q-factor would result in the resonant coils being very sensitive to 

its surroundings i.e., temperature, humidity, and human proximity [12]. Although there 

are claims by certain researchers that the WPT system is immune to harsh 

environments, there are very few literature to support this claim. 

Temperature and humidity are very important factors to consider when designing 

electronics appliances because any increase in temperature and humidity can reduce 

the lifespan of any electronic components and might even damage it. Besides that, they 

also have an impact on conventional charging as the device may take longer to charge 

when the temperature and humidity increase [13]. The WPT system uses a magnetic 

field to transfer power from one end to another, (that is, the magnetic coupling between 

a primary and a secondary winding). The electrical power can flow from the mains 

source to the load [14]. That magnetic field can be affected by the surrounding 

temperature and humidity.  

Although wireless power transmission offers numerous advantages, it also poses 

a possible safety issue due to human and animal exposure to the leaky magnetic field, 

which may have a negative effect on the general public's health. Due to the high power 

and frequency, a greater magnetic field is created when there is an air gap between the 

transmitter and receiver pads. This implies that the leaking magnetic field's frequency 

and amplitude must be carefully controlled to meet industry standards for safety [15].  

Therefore, this study aims to model and design a WPT system that can transmit 

energy from the transmitter to the receiver as well as investigate the effect of 
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temperature and humidity on wireless power transfer, and study the safety risk of 

electromagnetic exposure of the system to the general public. 

1.3 Objectives  

1. To design and model a wireless power transfer system (WPT) using FEM 

JMAG-Designer. 

2. To analyse the effect of load and input volt on the efficiency of the system. 

3. To investigate the effect of temperature and humidity in WPT. 

4. To study the safety and electromagnetic limits based on the specific absorption 

rate (SAR). 

1.4 Scope of Study 

The main purpose of this research was to analyze the effect of temperature and 

humidity on coil systems using inductive wireless charging systems which comprises 

of; efficiency vs distances (mm), efficiency vs resonant frequency, specific absorption 

rate, and design topologies. 

(i) This project entails the design of a wireless power transfer system that can 

transfer low voltage to a maximum of 200V. 

(ii) Frequency values are used to identify a suitable resonant frequency range 

between (10 kHz to 20 kHz) for different airgaps. 

(iii) The airgap used is between 0 to 100mm  

(iv) The design and analysis are carried out using JMAG-Designer ver16.0.01. 

(v) A prototype of WPT will be implemented based on the software specification, 

focusing on the transmitter and receiver pads. 

(vi) The study of electromagnetic exposure risk is based on the ICNIRP standard 

for magnetic field safety consideration. 

(vii) The temperature and humidity test are only performed on the experimental part 

due to lack of these parameters in the software. 
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1.5 Significance of Study 

In this study, an investigation of the effect of temperature and humidity on LCL 

topology WPT system was introduced. The finding of this study would help to 

understand how load affect the efficiency of the system, as well as to understand the 

effect of temperature and humidity on WPT system for a variety of applications such 

as laptops, scoters, etc... Therefore, the result of this study will contribute to the 

knowledge related to pad design using LCL compensation topology, and the safety 

risk of electromagnetic exposure to human body. 

1.6 Thesis Outline 

This section briefly outlines the structure of this thesis, it will be divided into five 

chapters as explained below. 

Chapter One: Introduction 

Chapter one is the introduction of this research thesis which includes the background 

of the study, problem statement, objectives, and scope, limitations, significance of 

study and finally, chapter summary. 

Chapter Two: Literature Review 

Chapter two consists of a review of related literature regarding the current issue of 

wireless power transfer. This section also includes the types of WPT that have been 

studied before and the mathematical derivation of the formula of the system. 

Moreover, it also explains more about the research problem that will be addressed in 

this project. 

Chapter Three: Research Methodology 

This chapter clarifies the method used to achieve the result of this study. It consists of 

an introduction, and simulation method which describes the software used in this 

project and the design parameters of the system. Furthermore, this chapter also 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



6 

 

 

describes the experimental method which includes the design parameter of the system, 

equivalent circuit, devices, and components used to obtain the result. 

Chapter Four: Results and Discussion  

This chapter comprises of the results of the research from both simulation and 

experimental methods, as well as analyses the result and compares the simulation vs 

experiment of the system.  

Chapter Five: Conclusion and Recommendation  

The last chapter of the research concludes the findings of the study in relation to the 

study’s objective. In addition, it also discusses the implication of the results and 

recommendations for future research. 
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