A PARAMETRIC STUDY OF PASSIVE FLOW CONTROL DEVICES FOR 90° CURVED DIFFUSER

MUHAMMAD ZAHID FIRDAUS BIN SHARIFF

A thesis submitted in fulfilment of the requirement for the award of the Degree of Masters of Mechanical Engineering

> Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

> > SEPTEMBER 2023

ACKNOWLEDGEMENT

First and foremost, I am grateful to Allah (glory be to Him) for making it possible for me to complete this research.

I would like to express my heartfelt gratitude to my supervisor, Dr Normayati binti Nordin, for providing me with all the necessary assistance and inspiring me to complete the thesis.

Mr Zainal Abidin Alias (Assistant Engineer of Aerodynamic Laboratory, UTHM) is also acknowledged for his lab technical assistance.

I would also like to thank the Faculty of Mechanical and Manufacturing Engineering at UTHM and the Ministry of Higher Education for funding the project entirely through the Fundamental Research Grant Scheme (FRGS).

Last but not least, I will be eternally grateful to my cherished family and friends for their never-ending encouragement and support.

ABSTRACT

The 90° curved diffuser has been widely utilised in various applications. The sharp curved angle and diffusing have simultaneously tackled the problem of space restrictions in some applications. However, due to the nature of its geometry, the curved diffuser's performance is compromised and disrupted. The potential of the flow treatment device, vortex generator (VG), to improve the performance of curved diffusers in terms of pressure recovery, C_p and flow uniformity, σ_{out} was experimentally and numerically investigated in this research. Experiments have been done to obtain data in terms of C_p and σ_{out} for bare curved diffuser and curved diffuser with triangle vorter generator attached. Three (3) types of vortex generators (triangle, rectangle, tapered-fin) with varying geometrical and operating parameters (height, spacing, distance, length, angle, inlet Reynolds Number) were considered. It had been demonstrated that the triangle VG offered the most promising improvement of C_p and σ_{out} at 43.1% and 9.7%, respectively. Height (2.75d and 3.85d), Spacing (5.5h), Inlet Reynolds Number (5. 786 \times 10⁴), Length (3.0h), Distance (6.0h) and Angle (18°) have been recommended as the optimal configuration of geometrical and operating parameters of the VG. The onset flow separation was discovered to have varied outcomes. However, the velocity vector distribution at the diffuser outlet showed that the flow was considerably more distorted; the flow deficit region observed at the diffuser inner wall had more core flow present when compared to the curved diffuser without VG installed.

ABSTRAK

Peresap melengkung 90° telah digunakan secara meluas dalam banyak aplikasi. Sudut melengkung tajam dan meresap terbukti secara serentak menangani masalah berkaitan dengan sekatan ruang dalam sesetengah aplikasi. Walaubagaimanapun, disebabkan sifat geometrinya, prestasi peresap melengkung terjejas dan terganggu. Potensi peranti rawatan aliran, penjana pusaran (VG) untuk meningkatkan prestasi peresap melengkung dari segi pemulihan tekanan, C_p dan keseragaman aliran, σ_{out} telah dikaji secara eksperimen dan numerik dalam penyelidikan ini. Eksperimen telah dilakukan untuk mendapatkan data dari segi C_p dan σ_{out} untuk penyebar melengkung kosong dan peresap melengkung dengan penjana vorter segitiga dipasang Kajian ini mengambilkira tiga (3) jenis penjana pusaran (segi tiga, segi empat tepat, sirip tirus) dengan parameter geometri dan operasi yang berbeza-beza (tinggi, jarak, jarak, panjang, sudut, Nombor Reynolds masuk). VG segi tiga terbukti paling berpotensi meningkatkan C_p dan σ_{out} masing-masing pada kadar 43.1% dan 9.7%. Ketinggian (2.75d dan 3.85d), Jarak (5.5h), Nombor Reynolds Masuk (5.786 \times 10⁴), Panjang (3.0h), Jarak (6.0h) dan Sudut (18°) disyorkan sebagai konfigurasi optimum bagi parameter geometri dan operasi VG. Didapati bahawa hasil pengasingan aliran permulaan adalah berbeza-beza. Namun, taburan vektor halaju di salur keluar peresap menunjukkan bahawa aliran itu jauh lebih herot; kawasan defisit aliran yang diperhatikan pada dinding dalam peresap mempunyai lebih banyak aliran teras hadir berbanding dengan peresap melengkung tanpa dipasang VG.

CONTENTS

T	TLE	i
D	ECLARATION	ii
Α	CKNOWLEDGEMENT	iii
A	BSTRACT	iv
A	BSTRAK	v
L	IST OF TABLES	ix
\mathbf{L}	IST OF FIGURES	xiv
L	ST OF SYMBOLS AND ABBREVIATIONS	XX
CHAPTER 1	INTRODUCTION	1
1.	1 Background of Study	1
1.	2 Problem Statement	2
SER ¹	3 Objectives	3
	4 Scope of Study	3
1.	5 Significant of study	4
CHAPTER 2	LITERATURE REVIEW	5
2.	1 Diffuser types and applications	5
	2.1.1 Applications	5
	2.1.2 Effects of geometrical and operating parameters	10
2.	2 Potentials of flow control devices to improve the performan	ice of a
cu	rved diffuser	22
	2.2.1 Vortex generator	23
	2.2.2 Guide vanes	34

	2.2.3 Mesh screen	45
	2.2.4 Guide vanes combined with mesh screens	47
2.3	Previous experimental works	50
2.4	Previous CFD works	53
2.5	Summary of literature	56
CHAPTER 3	METHODOLOGY	57
3.1	Research Workflow	57
3.2	Design and Development of Experimental Rig	59
	3.2.1 Conceptual Design	59
	3.2.2 Construction of 90° curved diffuser	61
	3.2.3 Construction of Vortex Generator	63
	3.2.4 Instrumentation and Measurement Setup	65
3.3	Numerical Method	74
	3.3.1 Modelling and Meshing	74
	3.3.2 Near Wall Treatment	77
	3.3.3 Grid Independence Study	77
	3.3.4 Boundary Conditions	78
	3.3.5 Solver Details	80
	3.3.6 Governing Equations	80
	3.3.7 Parametric Study	81
CHAPTER 4	RESULT ANALYSIS AND DISCUSSION	83
4.1	Experimental Results	83
	4.1.1 Fully Developed Flow in Experiment Rig	83
	4.1.2 Performance of 90° Curve Diffuser without Vortex Generat85	or
	4.1.3 Performance of 90° Curve Diffuser with Vortex Generator	86
	4.1.4 Concluding Remarks	86
4.2	Numerical Verifications and Validations	87

vii

4.2.1 Grid Independence Test	87
4.2.2 Pressure Recovery Validation	90
4.3 Numerical Investigation of Different Shapes of Potential Vorte	ex
Generators	98
4.3.1 Triangle	98
4.3.2 Rectangle	104
4.3.3 Tapered	110
4.3.4 Optimum Vortex Generator	116
4.4 Parametric Study of Optimum Vortex Generator	119
4.4.1 Height	119
4.4.2 Spacing	124
4.4.3 Inlet Reynolds Number, Rein	129
4.4.4 Length	134
4.4.5 Distance	139
4.4.6 Angle	144
4.5 Concluding Remarks	149
CHAPTER 5 CONCLUSION AND RECOMMENDATION	153
5.1 Recommendations	154
REFERENCE	155

viii

LIST OF TABLES

2.1	Published studies on curved diffusers	10
2.2	Comparison of mean outlet velocity, Vout and flow uniformity,	
	<i>σουt</i> [24]	18
2.3	Comparison of pressure recovery, <i>Cp</i> [24]	18
2.4	Tested configurations of 90° curved diffuser [25]	19
2.5	The flow uniformity of each case [25]	19
2.6	Previous research on the implementation of flow control devices	22
2.7	Tested parameters of wishbone vortex generator array [30]	25
2.8	Tested parameters of tapered-fin vortex generator array [30]	25
2.9	Pressure recovery coefficient of each case [33]	26
2.10	Parameters of rectangular and triangular VGs [6]	29
2.11	Description of SVG design parameters	30
2.12	Comparison of various Karman vortex generators [31]	33
2.13	Summary of vortex generator dimensions from previous studies	33
2.14	Summary of guide vane dimensions based on previous studies	45
2.15	Summary of several experimental studies on curved diffusers	51
2.16	Summary of several numerical studies on curved diffusers	53
3.1	Geometrical and operating parameters	65
3.2 PE	List of parameters and methods to use	65
3.3	Geometrical parameters of the diffuser model	74
3.4	Boundary conditions and fluid property	79
3.5	Parameter variations for height, spacing and length of triangle VG	
		82
3.6	Weightage of Performance Parameters	82
4.1	Local velocities at five points at the inlet of the diffuser	84
4.2	Local velocities at five points at the inlet of the diffuser (theory)	84
4.3	Deviations between local velocities measured and theoretical	
	local velocities	84
4.4	Pressure recovery coefficient, Cp from experiment for curved	
	diffuser without vortex generator	85

4.5	Pressure recovery coefficient, Cp from experiment for a curved	
	diffuser with vortex generator	86
4.6	Comparison of Cp between curved diffusers with and without VG	
		86
4.7	Grid independency test for a 90° curved diffuser without VG	88
4.8	Grid independency test for 90° curved diffuser with triangle VG	89
4.9	Comparison of Cp of an experiment to different turbulence	
	models	91
4.10	Average deviation for standard k-e and realizable k-e through all	
	Rein values	91
4.11	Comparison of the Cp of a curved diffuser without and with	
	triangle VG	99
4.12	Flow uniformity index at the outlet of the curved diffuser with	
	triangular VG	100
4.13	Onset flow separation point for a curved diffuser with triangle VG	
	and Without VG at $Rein = 5.786 \times 104$, $Rein = 6.382 \times 104$,	
	$Rein = 1.027 \times 105$, $Rein = 1.397 \times 105$ and $Rein =$	
	1.775 × 105	100
4.14	Onset flow separation points for a curved diffuser with Triangle	
	VG and Without VG at $Rein = 5.786 \times 104$, $Rein = 6.382 \times 104$	
	104 , $Rein = 1.027 \times 105$, $Rein = 1.397 \times 105$ and $Rein =$	
	1.775 × 105	102
4.15	Outlet velocity vector for a curved diffuser with Triangle VG and	
	Without VG at $Rein = 5.786 \times 104$, $Rein = 1.027 \times 105$ and	
	$Rein = 1.775 \times 105$	102
4.16	Comparison of the Cp of a curved diffuser without and with	
	triangle VG	105
4.17	Flow uniformity index at the outlet of the curved diffuser with	
	rectangular VG	105
4.18	Onset flow separation point for a curved diffuser with Rectangle	
	VG and Without VG at $\textit{Rein} = 5.786 \times 104$, $\textit{Rein} = 6.382 \times$	
	104 , $\textit{Rein} = 1.027 \times 105$, $\textit{Rein} = 1.397 \times 105$ and $\textit{Rein} =$	
	1.775×105	106

4.19	Onset flow separation points for a curved diffuser with Rectangle	
	VG and Without VG at $\textit{Rein} = 5.786 \times 104$, $\textit{Rein} = 6.382 \times$	
	104 , $Rein = 1.027 imes 105$, $Rein = 1.397 imes 105$ and $Rein =$	
	1.775×105	108
4.20	Outlet velocity vector for a curved diffuser with Rectangle VG	
	and Without VG at $Rein = 5.786 \times 104$, $Rein = 1.027 \times 105$	
	and $Rein = 1.775 \times 105$	109
4.21	Comparison of the Cp for curved diffuser without and with	
	tapered-fin VG	111
4.22	Flow uniformity index at the outlet of the curved diffuser with	
	Tapered-fin VG	112
4.23	Onset flow separation point for a curved diffuser with Tapered-	
	fin VG and Without VG at $Rein = 5.786 \times 104$, $Rein =$	
	6.382 imes 104 , $Rein = 1.027 imes 105$, $Rein = 1.397 imes 105$ and	
	$Rein = 1.775 \times 105$	112
4.24	Onset flow separation points for a curved diffuser with Tapered-	
	fin VG and Without VG at $Rein = 5.786 \times 104$, $Rein =$	
	6.382×104 , $Rein = 1.027 \times 105$, $Rein = 1.397 \times 105$ and	
	$Rein = 1.775 \times 105$	114
4.25	Outlet velocity vector for a curved diffuser with Tapered-fin VG	
	and Without VG at $Rein = 5.786 \times 104$, $Rein = 1.027 \times 105$	
	and $Rein = 1.775 \times 105$	115
4.26	Comparison of pressure recovery coefficient, Cp values for	
	curved diffuser without VG, with triangle VG, with rectangle VG	
	and Tapered-fin VG	117
4.27	Comparison of flow uniformity, σout values for curved diffuser	
	without VG, with triangle VG, with rectangle VG and Tapered-	
	fin VG	118
4.28	Triangle VG parameters and its fixed values	119
4.29	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for height parameter variation	120
4.30	Ranking of Cp and σout after applying weightage for height	
	parameters	120

4.31	Particle flow and flow separation point for a curved diffuser with	
	Triangle VG at height=1.65d, 4.95d, 8.23d	122
4.32	Onset flow separation points for a curved diffuser with Triangle	
	VG at height=1.65d, 4.95d, 8.23d	123
4.33	Outlet velocity vector for a curved diffuser with Triangle VG at	
	height=1.65d, 4.95d, 8.23d	123
4.34	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for spacing parameter variation	125
4.35	Ranking of Cp and σout after applying weightage for spacing	
	parameters	125
4.36	Particle flow and flow separation point for a curved diffuser with	
	Triangle VG at spacing = 4.00h, 4.75h, 5.50h	127
4.37	Onset flow separation points for a curved diffuser with Triangle	
	VG at spacing = 4.00h, 4.75h, 5.50h	128
4.38	Outlet velocity vector for a curved diffuser with Triangle VG at	
	spacing = 4.00h, 4.75h, 5.50h	128
4.39	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for inlet Reynolds number parameter variation	130
4.40	Ranking of Cp and σout after applying weightage for inlet	
	Reynolds number parameters	130
4.41	Particle flow and flow separation point for a curved diffuser with	
	Triangle VG at <i>Rein</i> = 5.786 × 104, 1.176 × 105, 1.775 × 105	
		132
4.42	Onset flow separation points for a curved diffuser with Triangle	
	VG at <i>Rein</i> = 5.786 × 104, 1.176 × 105, 1.775 × 105	133
4.43	Outlet velocity vector for a curved diffuser with Triangle VG at	
	$Rein = 5.786 \times 104, 1.176 \times 105, 1.775 \times 105$	133
4.44	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for Length parameter variation	135
4.45	Ranking of Cp and σout after applying weightage for length	
	parameters	135

xii

4.46	Particle flow and flow separation point for a curved diffuser with	
	Triangle VG at length = $2.00h$, $3.00h$, $4.00h$	136
4.47	Onset flow separation points for a curved diffuser with Triangle	
	VG at length = 2.00h, 3.00h, 4.00h	138
4.48	Outlet velocity vector for a curved diffuser with Triangle VG at	
	length = 2.00h, 3.00h, 4.00h	138
4.49	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for distance parameter variation	140
4.50	Ranking of Cp and σout after applying weightage for distance	
	parameters	140
4.51	Particle flow and flow separation point for a curved diffuser with	
	Triangle VG at a distance = 6.0h, 7.5h, 9.0h	142
4.52	Onset flow separation points for a curved diffuser with Triangle	
	VG at distance = 6.0h, 7.5h, 9.0h	143
4.53	Outlet velocity vector for a curved diffuser with Triangle VG at a	
	distance = 6.0h, 7.5h, 9.0h	143
4.54	Pressure recovery coefficient, Cp and flow uniformity index,	
	σout for Angle parameter variation	145
4.55	Panking of Cn and cout after applying weightage for angle	
	Kanking of cp and obut after apprying weightage for angle	
	parameters	145
4.56	parameters Particle flow and flow separation point for a curved diffuser with	145
4.56	parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = $18, 31.5, 45$	145 147
4.56 4.57	parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Onset flow separation points for a curved diffuser with Triangle	145 147
4.56 4.57	parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Onset flow separation points for a curved diffuser with Triangle VG at angle = 18, 31.5, 45	145 147 148
4.564.574.58	parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Onset flow separation points for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Outlet velocity vector for a curved diffuser with Triangle VG at	145 147 148
4.564.574.58	parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Onset flow separation points for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Outlet velocity vector for a curved diffuser with Triangle VG at angle = 18, 31.5, 45	145 147 148 148
4.564.574.584.59	 Ranking of <i>Cp</i> and <i>bout</i> after applying weightage for angle parameters Particle flow and flow separation point for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Onset flow separation points for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Outlet velocity vector for a curved diffuser with Triangle VG at angle = 18, 31.5, 45 Weightages for each performance parameters 	145 147 148 148 149

LIST OF FIGURES

2.1	Diffuser types (a) Bend diffuser [5], (b) S-shaped diffuser [8], (c)	
	Conical diffuser [9], (d) Pyramidal diffuser [2], (e) Y-shaped	
	diffuser [10], (f) Turning-rapid diffuser [11]	6
2.2	Diffuser geometry by Aziz et al. [13]	7
2.3	Bend-diffuser combination with short spacer shows highly	
	distorted flow at diffuser exit for both studies by; (a) Gan & Riffat	
	[2], (b) El-Askary & Nasr [5]	8
2.4	(a) Contours of velocity magnitude for wind tunnel before and (b)	
	after	9
2.5	Velocity profile of 3-D curved diffuser for each angle of turn	
	(Tham et al.) [19]	12
2.6	Comparison of normalised axial velocity at the inlet and outlet of	
	90° curved rectangular diffusers for (i) AS=0.5, (ii) AS=1.0, and	
	(iii) AS=2.0. [20]	13
2.7	Normalised axial velocity at the inlet and outlet of 90° curved	
	rectangular diffusers of aspect ratio, AS=2.0 at (i) Rein=1E10x5,	
	(ii) <i>Rein</i> =2E10x5, and (iii) <i>Rein</i> =8E10x5 [20]	14
2.8	Model of the 180° curved diffuser (Nguyen et al.) [11]	15
2.9 P E	Velocity streamlines of (a) inlet and (b) outlet of 180° curved	
	diffuser (Nguyen et al.) [11]	15
2.10	180° curved diffuser geometry and measuring sections	
	(Djebedjian et al.) [17]	16
2.11	Wall static pressure recovery coefficient (Djebedjian et al.) [17]	16
2.12	The contour map of (a) pressure recovery and (b) velocity for bare	
	90° diffuser, short <i>Lin/W</i> 1 and high AR [6]	17
2.13	The pressure recovery and losses of each case [25]	19
2.14	Characteristics of core flow, Vy (colour) and the resultant	
	secondary flows, Vx and Vz (arrow), at the outlet of (a) Rein=	
	5.786× 104 and (b) <i>Rein</i> =1.775× 105 [26]	20

2.15	Flow structures within the longitudinal section of a curved	
	diffuser (a) <i>Rein</i> =5.786× 104 and (b) <i>Rein</i> =1.775× 105 [26]	21
2.16	Vortex generator array geometries (a) wishbone, (b) tapered-fin,	
	(c) tapered-fin in minus orientation, and (d) tapered-fin in plus	
	orientation [30]	24
2.17	(a) Dimensions of SVG (b) Position of SVG (All dimensions are	
	in mm) [33]	26
2.18	Separation points of each case [33]	27
2.19	The parameters of (a) rectangular and (b) triangular vortex	
	generator [6]	28
2.20	The pressure recovery distribution for bare diffuser (-), with a	
	rectangular VG (square) and a triangular VG (triangle) [6]	29
2.21	The velocity contour of a diffuser with a triangular VG installed	
	[6]	30
2.22	(a) counter-rotating and (b) co-rotating type vortex generator	31 AH
2.23	Schematic diagram of counter-rotating SVG [28]	31
2.24	Sketch of vortex generator geometry [35]	32
2.25	Counter-rotating arrangement of SVG in Y-shaped air intake (cut	
	section) [28]	32
2.26	Profile shape of the conical diffuser with KGV [31]	33
2.27	The contours of velocity magnitude of (a) bare ducts at corners	
	(b) upstream installed guide vanes (c) downstream installed guide	
	vanes and (d) all corners installed with guide vanes [4]	36
2.28	Geometry of cascade 90° curved guide vanes. $d = spacing$	
	between vanes, $c = vane chord length$, $h0 = inlet distance between$	
	vanes, $h1 =$ outlet distance between vanes and $e = h1/h0 =$	
	expansion ratio [40]	37
2.29	The design of the new guide vane introduced by Lindgren et al.	
	[40]. The arrow indicates the flow direction.	38
2.30	A curved diffuser with guide vanes installed [41]	39
2.3	The contour maps of the total pressure of a bare diffuser and with	
	two guide vanes installed [41]	39
2.32	The geometry of guide vanes installed in the diffuser [6]	40

xv

2.33	The pressure recovery distribution of a bare diffuser (-) and	
	diffuser with seven guide vanes installed (triangle) [6]	41
2.34	Contour maps of (a) pressure recovery and (b) velocity with guide	
	vanes installed [6]	41
2.35	(a) and (b) Guide vanes detailed construction design [41]	43
2.36	The location of the airfoil guide vane in a $3-D 90^{\circ}$ curved diffuser	
		44
2.37	Airfoil guide vanes parameters (length and thickness in cm)	44
2.38	The pressure recovery distribution of bare diffuser (-) and with	
	mesh screen of $q = 5.5$ (triangle) [6]	46
2.39	Contour maps of (a) pressure recovery and (b) velocity of mesh	
	installed diffuser with $q = 5.5$ [6]	47
2.40	Pressure recovery distributions of $(\Delta)(q=3, gv=3, vg=0), (\Box)(q=3, Q)$	
	$gv=7, vg=0),(x)(q=5.5, gv=3, vg=0),(\circ)(q=5.5, gv=7, vg=0), and$	
	(-) bare diffuser case [6]	48
2.41	The comparison of (q=3, gv=3, vg=0), (q=3, gv=7, vg=0), (q=5.5,	
	gv=3, vg=0), (q=4.5, gv=7, vg=0) and (q=5.5, gv=7, vg=0) cases	
	for (a1)–(a5) measured pressure recovery and (b1)–(b5) velocity	
	contours, respectively [6]	49
2.42	Turbulence intensity contours of (a) (q=3, gv=7, vg=0) and (b)	
	(q=5.5, gv=7, vg=0) [6]	50
2.43	(a) Settling chamber, (b) contraction cone and (c) screens	
	fabricated using stainless steel	52
2.44	Experimental rig of a low subsonic wind tunnel system [46]	53
2.45	Hybrid-tetrahedral grid with inflation on inner and outer walls	55
3.1	Research methodology flow chart of experimental and numerical	
	work for 90° turning diffuser with variety types of vortex	
	generators (triangular, rectangular, and tapered fin)	58
3.2	Experimental rig that adopted several key features of low	
	subsonic wind tunnel system	60
3.3	Construction of 90° curved diffuser (all dimensions in mm)	62
3.4	Isometric view of 90° curved diffuser	62
3.5	Model and dimensions of (a) triangular, (b) rectangular, and (c)	
	tapered fin vortex generator	64

3.6	(a) Isometric and (b) side view of vortex generator installed on	
	the inner wall of 90° curved diffuser (c) front view from the inlet	
	of the diffuser and (d) picture of triangle vortex generator	
	installed in experimental rig	64
3.7	Measurement points (P1, P2, P3, P4 and P5) across the centreline	
	of turning diffuser inlet	67
3.8	Average inlet (pin) and outlet (pout) static pressure	
	measurement planes	69
3.9	Mean inlet (Vin), local (Vi) and mean (Vout) outlet air velocity	
	measurement planes	70
3.10	Instrumentation to measure <i>Pdyn</i> for fully developed test	71
3.11	Pitot static tube connected to a digital manometer	71
3.12	Five points to measure the dynamic pressure for a fully developed	
	flow test	72
3.13	Schematic drawing of pressure tappings to measure <i>pin</i> and <i>pout</i>	
		72
3.14	Measurement of inlet pressure using a Triple T-tube piezometer	
	connected to a digital manometer	73
3.15	Measurement of outlet pressure using a Triple T-tube piezometer	
	connected to a digital manometer	73
3.16	Construction of 90° curved diffuser for simulation	75
3.17	(a) Side and (b) isometric view of hexahedral mesh on the 90°	
	curved diffuser (c) Close up view on mesh inflation feature on	
	inner and outer walls	76
3.18	Procedure in grid independence test	78
4.1	Flow Velocity at Diffuser's Inlet	85
4.2	Pressure recovery coefficient, Cp of a curved diffuser without VG	
	vs with triangle VG	87
4.3	Grid size vs. <i>Cp</i> for each <i>Rein</i> for curved diffuser without VG	90
4.4	Comparison of standard k-e and realized k-e with the experiment	
	results for curved diffuser without VG and with VG	92
4.5	Flow structure in 90° curved diffuser without VG operated at	
	$Rein = 5.786 \times 104$ (a) PIV [49] (b) CFD (k-epsilon	
	turbulence model)	93

4.6	Flow structure in 90° curved diffuser without VG operated at		
	$Rein = 6.382 \times 104$ (a) PIV [49] (b) CFD	94	
4.7	Flow structure in 90° curved diffuser without VG operated at		
	$Rein = 1.027 \times 105$ (a) PIV [49] (b) CFD	95	
4.8	Flow structure in 90° curved diffuser without VG operated at		
	$Rein = 1.397 \times 105$ (a) PIV[49] (b) CFD	96	
4.9	Flow structure in 90° curved diffuser without VG operated at		
	$Rein = 1.775 \times 105$ (a) PIV [49] (b) CFD	97	
4.10	Pressure recovery coefficient, Cp of a curved diffuser without VG		
	vs with Triangle VG from 5.786 × 104 to 1.775 × 105 Rein	99	
4.11	Flow uniformity index, σout of a curved diffuser without VG vs		
	with Triangle VG from 5.786 × 104 to 1.775 × 105 <i>Rein</i>	100	
4.12	Pressure recovery coefficient, Cp of a curved diffuser without VG		
	vs with Rectangular VG from 5.786 × 104 to 1.775 × 105 <i>Rein</i>		
		105	
4.13	Flow uniformity index, σout of a curved diffuser without VG vs		
	with Rectangle VG from 5.786 × 104 to 1.775 × 105 Rein	106	
4.14	Pressure recovery coefficient, Cp of a curved diffuser without VG		
	vs with Tapered-fin VG from 5.786×104 to 1.775×105 Rein		
		111	
4.15	Flow uniformity index, σout of a curved diffuser without VG vs		
	with Tapered-fin VG from 5.786 × 104 to 1.775 × 105 Rein	112	
4.16	Graph comparison of Cp between curved diffuser without VG and		
	with triangle VG, with rectangle VG and Tapered-fin VG	117	
4.17	Graph comparison of flow uniformity between curved diffuser		
	without VG and with triangle VG, with rectangle VG and		
	Tapered-fin VG	118	
4.18	Triangle VG height vs Pressure recovery coefficient, Cp	121	
4.19	Triangle VG height vs flow uniformity index	121	
4.20	Triangle VG spacing vs Pressure recovery coefficient, Cp	126	
4.21	Triangle VG spacing vs flow uniformity index	126	
4.22	Triangle VG inlet Reynolds number vs Pressure recovery		
	coefficient, Cp	131	

4.23	Triangle VG inlet Reynolds number vs flow uniformity index	131
4.24	Triangle VG inlet Length vs Pressure recovery coefficient, Cp	136
4.25	Triangle VG height vs flow uniformity index	136
4.26	Triangle VG inlet Distance vs Pressure recovery coefficient, Cp	141
4.27	Triangle VG distance vs flow uniformity index	141
4.28	Triangle VG inlet Angle vs Pressure recovery coefficient, Cp	146
4.29	Triangle VG angle vs flow uniformity index	146

LIST OF SYMBOLS AND ABBREVIATIONS

XX

The following list gives the meaning of abbreviations used in this thesis unless otherwise defined in the text and appendices:

L _{in}	-	Inner wall length
W	-	Width
C_p	-	Pressure recovery coefficient
σ_{out}	-	Flow uniformity index
Re _{in}	-	Inlet Reynolds number
Vout	-	Outlet velocity
X	-	Length
D	-	Duct inlet diameter
D _h	-	Hydraulic diameter (m)
Ν	-	Number of measurement points
p_{dyn}	-	Dynamic pressure (Pa)
p _{in}	-	Average static pressure at the inlet (Pa)
<i>p</i> _{out}	15	Average static pressure at the outlet (Pa)
TDERY	<u> </u>	Operating temperature (°C)
U	-	Mean velocity (ms ⁻¹)
V _i	-	Local outlet air velocity (ms ⁻¹)
V _{i max}	-	Maximum local outlet air velocity (ms^{-1})
V _{in}	-	Mean inlet air velocity (ms ⁻¹)
AR	-	Area ratio
AS	-	Aspect ratio
HVAC	-	Heating, ventilation and conditioning
2-D	-	Two dimensional
3-D	-	Three dimensional
VG	-	Vortex generator
SVG	-	Submerged vortex generator

KVG	-	Karman vortex generator
CFD	-	Computational Fluid Dynamics
AOA	-	Area of attack
PIV	-	Particle image velocimetry
FLT	-	First layer thickness
MMS	-	Mesh maximum size
k-e	-	k-epsilon turbulence model
k-e realizable	-	k-epsilon realizable turbulence model
RNG k-e	-	Renormalization-group k-epsilon turbulence model
k-ω	-	k-omega turbulence model
RSM	-	Reynolds stress model
ACFD	-	Asymptotic Computational Fluid Dynamics

xxi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Diffuser has been commonly used and applied in aero-engineering, oil and gas, automotive and other industries that benefit from their fluid mechanic capabilities. The employment of diffusers with turbines has been a growing interest for their ability to increase the axial hydrodynamic load on the powertrain of the turbine as it presents a challenge to start the turbine due to its frictional torque [1]. A diffuser's simplest and basic form is a straight duct with an expanding cross-section on its end. Diffusers are mainly used to decrease flow velocity while increasing pressure. Many diffusers have been designed with different parameters such as area ratio (AR), divergence angle, length-to-width ratio (L_{in}/W_1) and aspect ratio (AS) to make improvements for its performance characteristics such as pressure recovery, flow uniformity and pressure losses.

Theoretically, expanding a straight duct would easily increase static pressure at the end of the expansion. Unfortunately, this is not the case due to the fact that there is a phenomenon known as flow separation and secondary flow, which its geometry would create. They would still occur even with the most optimum divergence angle of the diffuser [2]. Moreover, the curved diffuser would have a higher degree of secondary flow than the simple straight diffuser because of its complex geometry.

A diffuser performance is measured in terms of the pressure recovery coefficient(C_p) and outlet flow uniformity (σ_{out}). A higher C_p value represents high-pressure recovery, while the lower value of σ_{out} represents high flow uniformity. Some

diffusers are curved and bent to meet their space availability and applications. A standard wind tunnel would incorporate the curved diffuser to save space. In order to increase its power source efficiency, diffusers were installed in wind tunnels to convert the kinetic energy of the stream to the potential energy of pressure [3]. Calautit et al. [4] utilised a highly porous safety mesh and guide vanes to prevent parts from entering the axial fan section and improve flow characteristics.

El-Askary and Nasr [5] considered using a bend-straight diffuser as the system required a diffuser with optimum divergence angles and the right spacer length, which can produce a uniformly distributed flow depending on the inflow Reynolds number. However, this would significantly increase the duct length, thus, increasing the energy wasted on skin friction. The utilisation of a curved diffuser would be a more viable option for this case, while it can simultaneously save space and reduce the effect of skin friction in the duct.

In order to further improve the performance of the turning diffuser in terms of pressure recovery and flow uniformity, obtaining the optimum design for the flow control device is essential. This would mean reducing flow separation to achieve maximum efficiency for the curved diffusers. Several past studies have reported that the diffuser's performance can be increased by introducing flow control devices such as vortex generators, mesh screens, honeycomb and guide vanes [6]. Therefore, this study investigated the flow control device's potential to improve the curved diffuser's recovery and flow performance.

1.2 Problem Statement

Most of the time, diffusers are associated with flow separation and secondary flow. Flow separation occurs due to the more significant deceleration of shearing force than the pressure force pushing it at its boundary layer [6]. Riffat et al. [2] reported that flow separation would still occur even if the diffuser were at its optimum divergence angle. Fox and Kline [7] developed a correlation for the curved diffuser up until 90° and proved that a higher angle of curvature affects the diffuser's performance significantly. Thus, the diffuser with a high angle of curvature, such as 90°, which is widely used in various applications, should have some flow control device installed to assist the flow and increase the diffuser's performance.

The implementation of flow control devices in curved diffusers has been previously studied. It was observed that some flow control devices had more significant effects on the curved diffuser's performance than others [6]. However, this does not imply that one flow control device is better. This research investigated one of the flow control devices, namely the vortex generator, while determining its most optimum geometrical parameters for the 90° curved diffuser.

1.3 **Objectives**

The main objectives of this study were as follows:

- 1. To assess the potential of several shapes of vortex generators installed in a 90° curved diffuser through experiment and CFD simulations.
- 2. To evaluate the effects of varying the geometrical and operating parameters of vortex generators on the performance of 90° curved diffuser.
- 3. To propose the most optimum geometrical and operating parameters of vortex generator for the best performance of 90° curved diffuser. AKAAN TU

Scope of Study 1.4

The scopes of this study were as follows:

- 1. A 90° curved diffuser with a rectangular cross-section with AR=2.16, $L_{in}/W_1 = 4.37, Re_{in} = 5.786 \times 10^4 - 1.775 \times 10^5$
- 2. Various vortex generator shapes were considered, including triangle, rectangle, and tapered-fin.
- 3. The parameters considered to test the performance for each vortex generator shape were the height, spacing, length, distance, angle and inlet Reynolds number.
- 4. The performance of curved diffusers was evaluated primarily in terms of pressure recovery coefficient, C_p and flow uniformity, σ_{out} .

5. ANSYS version 19.2 intensively simulated the performance of a curved diffuser by employing different vortex generator geometrical parameters.

1.5 Significant of study

The curved diffuser has been widely employed in numerous engineering applications, from wind tunnels to smaller devices such as centrifugal compressors. As technology improves, the capacity to save power and boost machine efficiency is becoming a significant characteristic to consider in the design process. Although it has inferior flow properties than a straight diffuser, a curved diffuser is employed when space is restricted and complex arrangements are complex. The current research focused on further establishing the most optimum geometrical parameters for the vortex generators to improve the performance of a 90° curved diffuser. Past research for existing vortex generator designs was evaluated and analysed to offer an improved vortex generator design for better flow performance. For this purpose, both numerical and experimental approaches were employed. With minimal flow distortion at the output, a vortex generator design that has been improved will increase pressure recovery.

REFERENCES

- J. R. P. Vaz *et al.*, "Powertrain assessment of wind and hydrokinetic turbines with diffusers ☆," *Energy Conversion and Management*, vol. 195, no. May, pp. 1012–1021, 2019, doi: 10.1016/j.enconman.2019.05.050.
- S. B. Guohui, Riffat, "Measurement and Computational Fluid Dynamics Prediction of Diffuser Pressure-Loss Coefficient," *Applied Energy*, vol. 54, no. 2, pp. 181–195, 1996.
- [3] Azad et al., "Turbulent Flow in a Conical Diffuser : A Review," *Experimental Thermal and Fluid Science*, vol. 1777, no. 96, pp. 318–337, 1996.
- [4] J. Calautit, Kaiser, H. Nasarullah, B. Richard, and L. Fang, "Journal of Wind Engineering A validated design methodology for a closed-loop subsonic wind tunnel," *Jnl. Wind Eng. Ind. Aerodyn.*, vol. 125, pp. 180–194, 2014, doi: 10.1016/j.jweia.2013.12.010.
- [5] M. Nasr and E. Askary, "Author's personal copy Performance of a bend diffuser system: Experimental and numerical studies," An International Journal Computer and Fluids, vol 38, issue 1, 2009 doi: 10.1016/j.compfluid.2008.01.003.
- P. O. A. L. Chong, Davies, "A Parametric Study of Passive Flow Control for a Short, High Area Ratio 90 deg Curved," *Journal of Fluids Engineering*, vol. 130, November 2008, doi: 10.1115/1.2969447.
- [7] R. W. Fox and S. J. Kline, "Flow Regimes in Curved Subsonic Diffusers," *Journal of Basic Engineering*, page 303, 1962.
- [8] M. K. Gopaliya, P. Goel, S. Prashar, and A. Dutt, "Computers & Fluids CFD analysis of performance characteristics of S-shaped diffusers with combined horizontal and vertical offsets," *Comput. Fluids*, vol. 40, no. 1, pp. 280–290, 2011, doi: 10.1016/j.compfluid.2010.09.027.
- [9] E. M. Sparrow, J. P. Abraham, and W. J. Minkowycz, "International Journal of

Heat and Mass Transfer Flow separation in a diverging conical duct : Effect of Reynolds number and divergence angle," *Int. J. Heat Mass Transf.*, vol. 52, no. 13–14, pp. 3079–3083, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.02.010.

- [10] R. T. K. Raj and M. P. D. Shankar, "Effect of Convergent Angle on Flow Characteristics of Y-Shaped Diffusers using CFD," *Applied Mechanics and Materials*, vol. 594, pp. 1909–1913, 2014, doi: 10.4028/www.scientific.net/AMM.592-594.1909.
- [11] Nguyen, "A flow analysis for a turning rapid diffuser using CFD." *The Fourth International Symposium on Computational Wind Engineering (CWE2006)*.
- [12] H. K. Versteeg, "Effect of geometry on the performance of intermingling nozzles," *Textile Research Journal*, Vols. 69(8) 545-551, 1999.
- [13] M. A. Aziz, I. A. M. Gad, E. S. F. A. Mohammed, and R. H. Mohammed, "Experimental and numerical study of influence of air ceiling diffusers on room air flow characteristics," *Energy Build.*, vol. 55, pp. 738–746, 2012, doi: 10.1016/j.enbuild.2012.09.027.
- [14] A. Zamiri, B. J. Lee, and J. T. Chung, "Numerical Evaluation of Transient Flow Characteristics in a Transonic Centrifugal Compressor with Vaned Diffuser," *Aerosp. Sci. Technol.*, no. August, 2017, doi: 10.1016/j.ast.2017.08.003.
- [15] P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, "Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel," *Journal of Wind Engineering*, vol. 94, pp. 699–723, 2006, doi: 10.1016/j.jweia.2006.02.001.
- [16] B. Majumdar, R. Mohan, S. N. Singh, and D. P. Agrawal, "Experimental Study of Flow In a High Aspect Ratio 90 Deg Curved Diffuser," *Journal of Fluids Engineering* vol. 1, pp. 3–9. March 1998,.
- [17] B. Djebedjian, "Numerical And Experimental Investigations Of Turbulent Flow In A 180° Curved Diffuser," *Proceedings of ASME FEDSM'01*, pp. 1–9, 2001.
- [18] Khong et al., "Effect of turning angle on performance of 2-D turning diffuser via Asymptotic Computational Fluid Dynamics Effect of turning angle on performance of 2-D turning diffuser via Asymptotic Computational Fluid Dynamics," *IOP Conference Series: Materials Science and Engineering*, 243 2017, doi: 10.1088/1757-899X/243/1/012013.
- [19] T. W. Xian *et al.*, "Asymptotic Computational Fluid Dynamic (ACFD) Study of Three-Dimensional Turning Diffuser Performance by Varying Angle of Turn," *International Journal of Integrated Engineering*, vol. 5, pp. 109–118,

2019.

- [20] R. Kumaraswamy, K. Natarajan, and R. B. Anand, "CFD Analysis of Flow and Performance Characteristics of a 90 ° curved Rectangular Diffuser : Effects of Aspect Ratio and Reynolds Number," *International Journal of Turbo and Jet Engines*, 38(4), p-p 451-463, 2019.
- [21] B. Djebedjian and M. Safwat, "Numerical Investigations Of Two-And Three-Dimensional," *ICFDP9: Ninth International Congress of Fluid Dynamics and Propulsion*-285 December, 2008.
- [22] M. Safwat and B. Djebedjian, "Performance Of Three-Dimensional," Mansoura Engineering Journal, vol 35, No 3 page 27, 2010.
- [23] N. Nordin, V. R. Raghavan, S. Othman, Z. Ambri, and A. Karim, "Numerical Investigation of Turning Diffuser Performance by Varying Geometric and Operating Parameters," *Applied Mechanics and Materials*, vols 229-231, pp 2086-2093, November, 2012, doi: 10.4028/www.scientific.net/AMM.229-231.2086.
- [24] N. Nordin, Z. Ambri, A. Karim, and S. Othman, "The Performance of Turning Diffusers at Various Inlet Conditions The Performance of Turning Diffusers at Various Inlet Conditions," *Applied Mechanics and Materials*, vols 465-466, pp 597-602, October 2015, 2014, doi: 10.4028/www.scientific.net/AMM.465-466.597.
- [25] N. Nordin, V. R. Raghavan, S. Othman, Z. Ambri, and A. Karim, "Compatibility Of 3-D Turning Diffusers By Means Of Varying Area Ratios And Outlet-Inlet Configurations," *ARPN Journal of Engineering and Applied Sciences*, vol. 7, no. 6, pp. 708–713, 2012.
- [26] N. Nordin, Z. Ambri, and A. Karim, "Flow Characteristics of 3-D Turning Diffuser," 1st Biannual Post Graduate Conference, May, 2014.
- [27] N. Nordin "Performance Investigation of Turning Diffusers at Various Geometrical and Operating Parameters" Ph.D. dissertation, Dept. Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, December, 2016, doi: 10.13140/RG.2.2.33037.13286.
- [28] A. R. Paul, P. Ranjan, R. R. Upadhyay, and A. Jain, "Passive Flow Control through Y-shaped Air Intake using Submerged Vortex Generators "Passive Flow Control through a Y-shaped Air Intake," *International Conference of Theoretical, Applied, Computational and Experimental Mechanics,* Vols. 148,

pp. 373-375, December, 2010.

- [29] A. R. Paul, S. Joshi, A. Jindal, S. P. Maurya, and A. Jain, "Experimental studies of active and passive flow control techniques applied in a twin air-intake," *Sci. World J.*, vol. 2013, 2013, doi: 10.1155/2013/523759.
- [30] B. A. Reichert, "Improving Curved Subsonic Diffuser Performance with Vortex Generators," *AIAA Journal*, vol. 34, no. 1, 1996.
- [31] Y. Zhang, H. Chen, and S. Fu, "A Karman-Vortex Generator for passive separation control in a conical diffuser †," *Science China Press and Springer-Verlag Berlin Heidelberg*, Vol. 55, pp. 828-836 May, 2012, doi: 10.1007/s11433-012-4708-7.
- [32] T. P. Chong, P. F. Joseph, and P. O. A. L. Davies, "A parametric study of passive flow control for a short, high area ratio 90 deg curved diffuser," *J. Fluids Eng. Trans. ASME*, vol. 130, no. 11, pp. 1111041–11110412, 2008, doi: 10.1115/1.2969447.
- [33] T. B. Gohil, "Effect of Submerged Vortex Generator in an S-duct Flow Effect of Submerged Vortex Generator in an S-duct Flow," 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, pp. 1–4, December 2016.
- [34] J. C. Lin, "Review Of Research On Low-Profile Vortex Generators To Control Boundary-Layer Separation", *Progress in Aerospace Sciences*, vol. 38. pp 389-420, 2002.
- [35] C. M. Velte, M. O. L. Hansen, and D. Cavar, "Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements," *Environmental Research Letters*, vol.3(1) 015006, doi: 10.1088/1748-9326/3/1/015006.
- [36] M. Corp and S. Louis, St, "A New Passive Boundary-Layer Control Device," J. Aircraft, vol. 14, no. 7, pp. 654–660, 1932.
- [37] W. H. Rae, A. Pope, and Barlow, "Low-Speed Wind Tunnel Testing" Wiley Interscience Publication. 1999.
- [38] A. V Johansson and B. Lindgren, "Design and Evaluation of a Low-Speed Wind-Tunnel with Expanding Corners," *Technical report. TRITA-MEK*. October, 2002.
- [39] A. Sahlin, A. V Johansson, A. Sahlin, and A. V Johansson, "Design of guide vanes for minimizing the pressure loss in sharp bends Design of guide vanes for

minimizing the pressure loss in sharp bends," AIP Physics of Fluids A: Fluid Dynamics, vol. 1934, no. 1991, 2011, doi: 10.1063/1.857923.

- [40] B. Lindgren, J. O, and A. V Johansson, "Measurement and calculation of guide vane performance in expanding bends for wind-tunnels," *Experiments in Fluids*, vol. 24, pp. 265-272, 1998.
- [41] L. Z. P. Eugene, N. Nordin, S. Othman, and V. R. Raghavan, "A CFD Preliminary Study : Pressure Losses and Flow Structure in Turning Diffuser by means of Installing Turning Baffles Abstract," 2nd International Conference on Mechanical Engineering (ICME 2011), June, 2011.
- [42] N. Hazirah, N. Seth, N. Nordin, and S. Othman, "Investigation of Flow Uniformity and Pressure Recovery in a Turning Diffuser by Means of Baffles," *Applied Mechanics and Materials*, Vols. 465-466 pp 526-530, 2014, doi: 10.4028/www.scientific.net/AMM.465-466.526.
- [43] N. N. Seth, N. Binti, M. Isa, S. B. Othman, and V. R. Raghavan, "The Effects Of Angle Of Attack On 3-Dimensional Turning Diffuser On Baffle Performances," *ARPN Journal of Engineering and Applied Sciences*, vol. 11, no. 3, pp. 1536–1541, 2016.
- [44] N. Hazirah, "Parametric Study On The Design Of Baffle For Threedimensional Turning Diffuser," Ph.D. dissertation, Dept. Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, November, 2016.
- [45] N. Nordin, Z. Ambri, A. Karim, S. Othman, and V. R. Raghavan, "Effect of Varying Inflow Reynolds Number on Pressure Recovery and Flow Uniformity of 3-D Turning Diffuser," 3rd International Conference and Exhibition on Sustainable Energy and Advanced Material, 2013.
- [46] N. Nordin, Z. Ambri, A. Karim, and S. Othman, "Design and Development of Low Subsonic Wind Tunnel for Turning Diffuser" Advanced Materials Research Vols. 614-615 pp 586-591, December 2012, doi: 10.4028/www.scientific.net/AMR.614-615.586.
- [47] N. M. C. Martins, N. J. G. Carriço, H. M. Ramos, and D. I. C. Covas, "Velocity-Distribution In Pressurized Pipe Flow Using CFD: Accuracy And Mesh Analysis," *Computers and Fluids*, vol. 105, pp. 218–230, 2014, doi: 10.1016/j.compfluid.2014.09.031.
- [48] Y. T. Khong *et al.*, "Effect of turning angle on performance of 2-D turning diffuser via Asymptotic Computational Fluid Dynamics," *IOP Conf. Ser.*

Mater. Sci. Eng., vol. 243, no. 1, 2017, doi: 10.1088/1757-899X/243/1/012013.

- [49] N. Nordin, "Performance Investigation Of Turning Diffusers At Various Geometrical and Operating Parameters" Ph.D. dissertation, Dept. Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 2016
- [50] Y. A. Cengel, Fluid Mechanics: Fundamental and Applications. 2014.
- [51] J. Kim, P. Moin, and R. Moser, "Turbulence statistics in fully developed channel flow at low Reynolds number," *Journal of Fluid Mechanics*, Vols. 177, pp 133-166, April 1987, doi: 10.1017/S0022112087000892.
- [52] Dwyer, "Series 160 Stainless Steel Pitot Tubes: Specifications- Installation and operating instructions," 1999.
- [53] S. B. Schut, E. H. Van Der Meer, J. F. Davidson, and R. B. Thorpe, "Gas solids flow in the diffuser of a circulating fluidised bed riser," *Powder Technology* 11, pp. 94–103, 2000.

VITA

The author was born in October 14, 1996, in Seremban, Malaysia. He went to Maktab Rendah Sains MARA, Alor Gajah, Melaka, and Kuala Klawang, Negeri Sembilan, Malaysia for his secondary school. He pursued his degree at the Universiti Tun Hussein Onn Malaysia, and graduated with the B.Eng. (Hons) in Mechanical and Manufacturing Engineering in 2015. Upon graduation, he continued to pursue his Masters degree in Mechanical Engineering by research at Universiti Tun Hussein Onn Malaysia in 2019. While conducting his research, he also started to work at Sunlight Switchgear Sdn. Bhd. as a design engineer and later switched to work at Dyson Manufacturing Sdn. Bhd in 2022 until now where he works as a design engineer which involved in designing machines parts as well as its performance.

