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ABSTRACT 

 

 

Peripheral arterial disease (PAD) is a narrowing of the peripheral arteries that might 

result in blockage if not immediately treated. Normally, an invasive technique called 

stenting is used at the stenosed arterial region to restore normal blood flow. However, 

it promotes the formation of thrombosis on the stented artery due to the presenting 

flow recirculation. However, the rate of thrombosis growth was reported to be different 

for both genders. This is due to an increase in body surface area, body mass index, and 

weight of the body. Furthermore, different vascular regions have presented different 

flow characteristics that highly depend on the vascular physical condition. Thus, this 

study aims to investigate the effect of the physiological and physical conditions of men 

and women with different hemodynamic parameters on the strut configuration in 

femoral popliteal artery. Five different stent strut configurations were modelled and 

inserted into the femoral popliteal artery. The computational fluid dynamic (CFD) 

method was implemented to solve the continuity and Nevier Stokes equations. The 

hemodynamic performance of the stent was analysed based on hemodynamic 

parameters consisting of time-averaged wall shear stress (TAWSS), time-averaged 

wall shear stress gradient (TAWSSG), oscillatory shear index (OSI), and relative 

residence time (RRT). According to the observations, the distal region of the stented 

femoral popliteal artery had more dominant flow re-circulation than the proximal 

region. The high void area contributed to less growth of the thrombosis. The pictorial 

selection method was used to evaluate the best hemodynamic stent performance based 

on a scoring system. In all cases, Type I stents showed the best hemodynamic 

parameter performance over the other stented femoral popliteal artery with an average 

score of 4.14, followed by Type III, Type V, Type II, and Type IV with an average 

score of 3.47, 3.10, 2.97, and 1.31, respectively.  
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ABSTRAK 

 

 

Penyakit arteri periferal (PAD) ialah penyempitan arteri periferi yang mungkin 

tersumbat jika tidak dirawat dengan segera. Biasanya, teknik invasif melalui stent 

dilaksanakan di kawasan arteri stenose untuk memulihkan aliran darah kembali 

normal. Keadaan ini boleh menggalakkan pembentukan trombosis pada arteri stented 

disebabkan oleh peredaran semula aliran yang ditunjukkan. Walau bagaimanapun, 

kadar pertumbuhan trombosis dilaporkan berbeza untuk kedua-dua jantina; lelaki dan 

wanita. Ini disebabkan oleh peningkatan luas permukaan badan, indeks jisim badan, 

dan berat badan. Oleh itu, kajian ini bertujuan untuk menyiasat kesan keadaan fisiologi 

dan fizikal lelaki dan wanita dengan parameter hemodinamik yang berbeza terhadap 

konfigurasi tupang dalam femoral popliteal artery. Lima konfigurasi tupang stent 

berbeza telah dimodelkan dan dimasukkan ke dalam femoral popliteal artery. Kaedah 

dinamik bendalir pengiraan (CFD) telah dilaksanakan untuk menyelesaikan 

persamaan kesinambungan dan N-S. Prestasi hemodinamik stent dianalisis 

berdasarkan parameter hemodinamik yang terdiri daripada tegasan ricih dinding purata 

masa (TAWSS), kecerunan tegasan ricih dinding purata masa (TAWSSG), indeks ricih 

berayun (OSI) dan masa tinggal relatif (RRT). Daripada pemerhatian, kawasan distal 

FPA stent menunjukkan peredaran semula aliran dominan berbanding dengan kawasan 

proksimal. Kawasan lompang yang tinggi menyumbang pertumbuhan trombosis yang 

lebih rendah. Kaedah pemilihan bergambar digunakan untuk menilai prestasi stent 

hemodinamik terbaik berdasarkan sistem pemarkahan. Dalam semua kes, stent Jenis I 

menunjukkan bahawa prestasi parameter hemodinamik terbaik berbanding yang lain 

stent FPA dengan skor purata 4.14 diikuti oleh Jenis III, Jenis V, Jenis II dan Jenis IV 

dengan skor masing-masing 3.47, 3.10, 2.97 dan 1.31. Akhirnya, prestasi terbaik stent 

telah dikira untuk stent Jenis 1 yang meramalkan untuk mengurangkan pertumbuhan 

trombosis kira-kira 50 peratus berbanding dengan yang lain.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1 Background of Study 

The restriction of blood flow in the femoral popliteal artery (FPA) will cause severe 

disease in patients known as peripheral artery disease (PAD). Peripheral artery disease 

is intimately related to chronic inflammatory processes resulting in the formation of 

lipid plaques or stenosis within arterial walls [1]. The standard treatment of arterial 

stenosis is by stenting, which effectively props open the artery and thereby restores 

blood flow in the diseased vessel [2]. However, in the first month after stent 

implantation, the restenosis or re-blockage in the artery has already occurred due to 

atherosclerosis and the growth of thrombosis [3]. Atherosclerosis is the hardening of 

the arterial wall caused by a build-up of fatty material, while thrombosis is the 

formation of a blood clot within the lining of an artery, especially in a stented artery. 

This abnormality of blood movement makes the fatty materials deposit near the stent 

strut configuration. An arterial injury causes the arterial wall to undergo an episodic 

process of thrombus formation, arterial inflammation, neointimal hyperplasia, and 

stent remodelling [4]. 

A previous study found that a different strut arrangement accelerated 

atherosclerosis and thrombosis development significantly. The considerable 

advancement is owing to the fact that each stent has its own strut configuration, which 

presents variable flow characteristics near the strut [5]. Thus, the significant progress 
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allows the hemodynamic performance of the stent to be predicted. However, 

Nordstrom et al (2008) [6] mentioned that, the rate of thrombosis was different 

between men and women due to increased body surface area, body mass index, and 

weight for men than women. Furthermore, different vascular regions have presented 

different flow characteristics that highly depend on the vascular physical condition 

[7]. Hence, this study was aimed at determining the flow phenomenon near the 

geometrical pattern of the stent strut configuration to predict the thrombosis growth 

for different genders and physiological conditions.  

The flow process of this research was divided into two sections; simulation and 

evaluation procedures. In simulation, the simplified geometry of the femoral popliteal 

artery was developed using computer-aided design (CAD) software to predict the 

hemodynamic effects of the different stent strut configurations. The computational 

fluid dynamic (CFD) method was implemented in the modelling to predict the flow 

behavior by solving the continuity and Navier-Stoke equations. The computed 

tomography method could predict the potential risk of restenosis and wall shear stress 

distribution in stented arteries [8]. In the second process, this study proposed a detailed 

analysis and assessment to predict the favorable hemodynamic stent performances 

among the stents by comparing the hemodynamic variable effects on five different 

types of commercial stent strut configurations. The hemodynamic variables considered 

were time-averaged wall shear stress (TAWSS), time-averaged wall shear stress 

gradient (TAWSSG), oscillating shear index (OSI), and relative residence time (RRT). 

The stent performance evaluation known as the Stent Pictorial Selection Method was 

used, adapted from the Concept Selection Method by Ulrich et al (2003) [9] which 

originally evaluates the concept design of a product. Four different evaluation 

processes were applied in the selection method, consisting of screening, rating, 

weighting, and scoring processes. The evaluation method is able to detect the best stent 

strut configuration with the lowest score of restenosis development. 
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1.2 Problem Statement  

 

Over the past decades, endovascular technologies have been evolving rapidly, and 

innovative revascularization strategies such as stenting have been proposed for 

peripheral artery disease (PAD) [10]. However, it is still debatable about the suitable 

design of stent strut configuration due to the restenosis effect after the stenting 

procedure. Previous clinical studies have shown that the incidence of restenosis after 

stenting varies with stent design and deployment configuration. Differences in stent 

design contribute to disparity in wall shear stress distribution as the presence of stent 

struts in the arterial wall creates local flow disturbances between the strut edges 

protruding into the lumen [11].  The increase in the rate of restenosis a few months 

after stent implantation caused the severity of the disease to increase as well as diverge 

the blood from the main direction of the flow. This phenomenon may promote the 

formation of thrombosis on the stented artery due to the presence of flow recirculation. 

Nordstrom et al (2008) [6] mentioned that the rate of thrombosis was different between 

men and women due to increased body surface area, body mass index, and weight for 

men than women.  

Furthermore, different vascular regions have presented different flow 

characteristics that highly depend on the vascular physical [5,6]. Additionally, based 

on previous studies, the haemodynamic parameters have a specific threshold or range 

of values to indicate the activity of atherosclerosis and thrombosis that reflect the 

restenosis development [12,13,14,15,16,17]. Different critical hemodynamic 

parameters affect the different flow characteristics due to the variety of stent strut 

configurations in the femoral popliteal artery. Thus, the evaluation of restenosis 

development induced by the flow recirculation due to the misaligned direction of blood 

flow for different genders and physiological conditions is identified as the main issue 

in the present study. 
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1.3 Objective  

 

i. To determine the hemodynamic effect on different stent strut configurations 

in femoral popliteal artery during the physical and physiological conditions 

for men and women.  

ii. To analyze critical hemodynamic parameters affecting the flow characteristic 

due to different stent strut configurations in femoral popliteal artery 

iii. To evaluate the stent performance due to the hemodynamic effect on different 

stent strut configurations in the femoral popliteal artery 

 

1.4 Scope of study  

 

i. The conditions involved are physical condition and physiological condition for 

normal blood pressure (NBP) state were involved.  

ii. Five different strut configuration open type cell stent which have larger gaps 

uncovered were considered. 

iii. A simplified model of femoral popliteal artery was studied. 

iv. A stent strut configuration was implanted in the interior of a vessel of femoral 

popliteal artery 

v. The computational fluid dynamic (CFD) method was considered in this study. 

 

1.5 Significance of study  

 

Stents are deployed to physically reopen stenotic regions of arteries and to restore 

blood flow [18]. However, different stent strut configurations contribute to different 

blood characteristics that lead to stent thrombosis and atherosclerosis. The growth of 

thrombosis and atherosclerosis can be predicted through the flow recirculation at the 

stent strut configuration in femoral popliteal artery [19]. Nevertheless, the rate of 

thrombosis was different between men and women due to increased body surface area, 

body mass index, and weight for men than women [6]. Besides, the physical condition 

also contributes towards the flow recirculation of the stent [7]. The flow recirculation 

varies according to the geometrical patterns of stent strut configuration with different 
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physical conditions. Thus, the specific geometry of strut configuration was 

numerically studied to present hemodynamic stent performance. The analyzed 

hemodynamic performances of stents are able to elucidate strut configuration with a 

low possibility of restenosis activity of atherosclerosis and thrombosis due to flow 

behavior in the femoral popliteal artery [5]. This analysis can be achieved by applying 

an evaluation system that is implemented specifically for stent strut configuration. 

Thus, this study is able to assist the medical practitioner for choosing the best stent 

strut configuration for the physiological condition of both genders and physical 

condition. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

Advances in stent technology have improved the safety and efficacy of stent devices. 

Despite these advances, restenosis and device thrombosis remain a major concern and 

are still affecting long-term clinical outcomes [20]. Flow recirculation and flow 

disturbances have been shown to increase the risk of thrombosis. Thus, a study about 

the prediction of the growth of thrombosis by analysing the flow characteristic was 

reviewed based on previous work. The parameter considered were OSI, RRT, TAWSS 

low, TAWSS high, TAWSS normal and TAWSSG. 

 This hemodynamic variable was identified to predict the formation of 

thrombosis, which would contribute to the performance of several stent configurations. 

In addition, understanding hemodynamic effect due to different gender was focused as 

well in obtaining the knowledge and ideas for this current study. This is due to the fact 

that height, weight, BMI and whole blood were different in men than in women. 

Besides, men and women are also thought to significantly differ at the cellular and 

molecular levels, with gender differences reported in platelet function and coagulation 

factor activities [2,22,23].  In addition, throughout this study, the physical condition 

also be considered. This is due to healthy adults do not exhibit local variations of wall 

shear stress in the Superficial Femoral artery at rest, but segmental differences in wall 

shear stress occur after exercise [7].  
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2.2 Effect of exercise on hemodynamic in FPA 

 

In 2011 Schlager et al [7] conducted in vivo study on wall shear stress in the superficial 

femoral artery of healthy adults and its response to postural changes and exercise. The 

purpose of this study was to investigate the profile of peak wall shear stress and mean 

wall shear stress along the FPA axis in healthy adults at rest. Following postural 

changes after exercise in order to identify segmental variations of wall shear stress that 

might contribute to the typical distribution of atherosclerotic lesions later in life. After 

exercise, peak and mean wall shear stress increased in all segments. The researcher 

concluded that healthy adults do not exhibit local variations of wall shear stress in the 

Superficial Femoral artery at rest, but segmental differences in wall shear stress occur 

after exercise as shown in Table 2.1. 

 

Table 2.1: Peak systolic velocity (PSV) in the superficial femoral and popliteal artery 

in healthy subjects [7] 

 AT REST AFTER EXERCISE P-VALUE 

Proximal SFA 0.88 (0.76-0.97) 1.38(1.24-1.66) <0.0001 

Proximal Hunter’s canal 0.90(0.82-1.05) 1.37(1.19-1.55) <0.0001 

Distal Hunter’s canal 0.91(0.76-1.07) 1.369(1.17-1.49) <0.0001 

Popliteal artery 0.890(0.74-1.03) 1.65(1.31-1.83) <0.0001 

Proximal Hunter’s canal 0.70(0.63-0.82) 1.34(1.10-1.59) <0.0001 

 

The force that flowing blood exerts on the vessel wall, has emerged as a local 

risk factor being involved in atherogenesis and arterial remodelling. Wall shear stress 

is determined by flow velocity and whole blood viscosity and is inversely related to 

the vessel diameter [22]. Recent studies have found that peak wall shear stress and 

mean wall shear stress vary depending on location and exercise workload.  In addition, 

peak systolic velocity was higher in females than in males in the popliteal artery after 

exercise. This is due to the different height, weight, BMI, whole blood viscosity, 

haematocrit, haemoglobin and red blood cell count were higher in men than in women 

[7]. Thus, the difference formation of stenosis for gender deserve further discussion. 
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2.3 Stenosis of man and women in FPA 

 

Atherosclerosis is a term that refers to the thickening and hardening of arteries, which 

can result in diminished and restricted blood flow over time. Simply put, arterial 

thickening develops as a result of the accumulation of plaque in the intima of the 

arterial wall, which gradually expands, hence narrowing the arterial lumen. Plaques 

can burst into the lumen in advanced cases, resulting in thrombosis, blood clot 

formation, occlusion of the artery, and restriction of blood flow [4]. As illustrated in 

Figure 2.1, the age and gender adjusted risk factors for PAD are comparable to the 

classic risk factors for atherosclerosis, including cigarette smoking, diabetes, 

hyperlipidaemia, hypertension, hyperhomocysteinemia, and chronic renal 

insufficiency. 

 

Figure 2.1: Approximate range of odds ratios for risk factors for symptomatic 

peripheral arterial disease [25] 
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