# MACHINE LEARNING ALGORITHM TO DETERMINE STRAY GASSING IN TRANSFORMER OIL BASED ON DISSOLVED GASES

# HAW JIA YONG

A thesis submitted in fulfilment of the requirement of the award of the Degree of Master of Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > FEBRUARY 2023

Dedicated for my beloved parents

# Haw Lian Aik

and

### Tan Mee Mee

for their endless love and support throughout my life.

For my inspiring supervisor Ir. Dr. Mohd Fairouz Bin Mohd Yousof for your advice and encouragement for this research.

For my love one Chan Mei Ting for supporting me throughout my study.

## ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisor, Ir. Dr. Mohd Fairouz Bin Mohd Yousof for his supervision, guidance, and advice from the beginning of the research until the end. He has always been supportive of me anytime I ran into difficulties and hard times to complete my research and publication papers. I am grateful that I am able to complete my master's research under his guidance and care.

I would also like to thank to Dr. Hamidon Bin Salleh and Encik Shahrul Mahadi Bin Samsudin for their kind permission in allowing my usage of the laboratory for the experimental insulation oil heating test.

Besides that, I would like to express my gratitude to my parents, Haw Lian Aik and Tan Mee Mee for giving me support and motivation throughout my study and through the process of completing my master's.

Last but not least, I want to express my gratitude to my partner, Chan Mei Ting, for staying beside me and providing me continuous encouragement throughout this venture. This feat would not have been a success without her.



### ABSTRACT

Transformer is part of the most important electrical equipment in the distribution power system network. However, transformer will exhibit faults under long operation which may often be confused with the stray gassing (SG) phenomenon. Nevertheless, this SG phenomenon is still being left out by many researchers and the root causes are yet being identified. The current SG test and interpretation methods used by the industries is also very inefficient and inaccurate, where the existing Duval Pentagon Method (DPM) interpretation method is proven with a low accuracy of only 58.7% to interpret stray gassing condition. Therefore, an accurate and fast interpretation tool is required to solve the dissolved gas analysis (DGA) interpretation and gassing pattern of transformer materials should be investigated to help in transformer root cause determination. This research work involves the use of ensemble-based machine learning (ML) algorithms to improve the interpretation accuracy of DPM. Three ML models are developed, and all the models are also showing promising results with more than 70.0% of interpretation accuracy to interpret three different transformer conditions. The random-under-sampler (RUS)boosted trees model is the best model with the interpretation accuracy of 81.2%. Besides, three different transformer materials, which are insulation paper, core metal, and gasket were experimented with uninhibited and inhibited transformer oil under heat to understand the gassing behaviour caused by the materials. The findings indicate that for uninhibited oil, the insulation paper effects the generation of hydrogen (H<sub>2</sub>), carbon monoxide (CO) and carbon dioxide  $(CO_2)$  gases, the core metal effects generation of CO gases, and the gasket effects the generation of  $H_2$ , methane (CH<sub>4</sub>), ethylene (C<sub>2</sub>H<sub>4</sub>), CO and CO<sub>2</sub> gases. For the inhibited oil, the insulation paper effects the generation of H<sub>2</sub> and CO<sub>2</sub> gases, the core metal effects the generation of H<sub>2</sub>, CO and CO<sub>2</sub> gases, and the gasket effects the generation of H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, CO and CO<sub>2</sub> gases. This research contributes to the use of data resampling method to design ML models with high interpretation accuracy and also contributes to the findings of gassing characteristics for gasket material.

#### ABSTRAK

Alat pengubah elektrik adalah sebahagian daripada peralatan elektrik yang paling penting dalam rangkaian sistem pengagihan kuasa. Namun, alat pengubah elektrik akan mengalami kerosakan dalam jangka Panjang operasi dan sering dikelirukan dengan fenomena gas sesat (SG). Walau bagaimanapun, fenomena SG ini masih diabaikan oleh ramai penyelidik dan banyak lagi punca SG yang belum dikaji. Kaedah ujian SG yang digunakan oleh industri sekarang sangat tidak effisen dan tidak tepat, di mana tafsiran DPM telah dibuktikan dengan ketetapan serendah 58.7% sahaja. Oleh itu, satu alat tafsiran yang tepat dan pantas diperlukan untuk menyelesaikan masalah tafsiran DGA dan bahan alat pengubah elektrik perlu dikaji dari segi corak pengegasan untuk membantu dalam penentuan punca pengesasan. Kerja penyelidikan ini merangkumi penggunaan algoritma pembelakaran mesin berasaskan ensemble untuk meningkatkan ketepatan tafsiran kaedah DPM. Tiga model pembelajaran telah direka, dan kesemua model telah menghasilkan keputusan yang memuaskan dengan lebih daripada 70.0% ketepatan dalam pentafsiran keadaan alat pengubah elektrik. RUS boosted tree model merupakan model yang paling bagus dengan keseluruhan ketepatan pentafsiran sebanyak 81.2%. Tiga bahan alat pengubah eletrik yang berbeza (kertas penebat, logam teras dan gasket) telah dikaji dengan campuran minyak pengubah terhalang dan minyak pengubah tidak terhalang di bawah haba untuk memahami corak pengegasan yang berlaku. Pendapatan kajian menunjukkan dalam minyak pengubah tidak terhalang, kertas penebat menyebabkan pengegasan  $H_2$ , CO dan CO<sub>2</sub>, logam teras menyebabkan pengegasan CO dan gasket menyebabkan pengegesan H2, CH4,  $C_2H_4$ , CO dan  $CO_2$ . Dalam minyak pengubah terhalang pula, kertas penebat menyebabkan pengegasan H2 dan CO2, logam teras menyebabkan pengegesan H2, CO dan  $CO_2$  dan gasket menyebabkan pengegasan  $H_2$ ,  $C_2H_4$ , CO dan  $CO_2$ . Kerja penyelidikan ini menyumbang kepada penggunaan keadah pensampelan semula untuk mereka model pembelajaran yang boleh menghasilkan ketepatan pentafsiran yang tinggi dan juga kepada penemuan ciri penghasilan gas untuk bahan gasket.

# CONTENTS

|           | TITLE                  |                   |                           | i     |  |  |
|-----------|------------------------|-------------------|---------------------------|-------|--|--|
|           | DECLA                  | RATIO             | N                         | ii    |  |  |
|           | DEDIC                  | ATION             |                           | iii   |  |  |
|           | ACKN                   | OWLED             | EMENT                     | iv    |  |  |
|           | ABSTR                  | ACT               |                           | v     |  |  |
|           | ABSTR                  | AK                |                           | vi    |  |  |
|           | CONTI                  | ENTS              |                           | vii   |  |  |
|           | LIST O                 | F TABL            | ES                        | xiii  |  |  |
|           | LIST O                 | F FIGU            | RES                       | xv    |  |  |
|           | LIST O                 | F SYMB            | SOLS AND                  | xviii |  |  |
|           | ABBRE                  | EVIATIC           | INS                       |       |  |  |
|           | LIST O                 | F APPE            | NDICES                    | XX    |  |  |
| CHAPTER 1 | INTRO                  | DUCTIO            | DN                        | 1     |  |  |
|           | 1.1 Project Background |                   |                           |       |  |  |
|           | 1.2                    | Problem Statement |                           |       |  |  |
|           | 1.3                    | Objectiv          | ves                       | 5     |  |  |
|           | 1.4                    | Project           | Scopes/ Limitations       | 5     |  |  |
| CHAPTER 2 | LITER                  | ATURE             | REVIEW                    | 6     |  |  |
|           | 2.1                    | Overview          | N                         | 6     |  |  |
|           | 2.2                    | Types of          | Power Transformer         | 6     |  |  |
|           |                        | 2.2.1             | Oil-Filled Transformer    | 7     |  |  |
|           |                        | 2.2.2             | Dry Type Transformer      | 8     |  |  |
|           | 2.3                    | Transfor          | mer Oil                   | 8     |  |  |
|           |                        | 2.3.1             | Uninhibited Transformer   | 10    |  |  |
|           |                        |                   | Oil                       |       |  |  |
|           |                        | 2.3.2             | Inhibited Transformer Oil | 11    |  |  |

|  |     | 2.3.3      | Comparis         | son between      | 12 |  |  |
|--|-----|------------|------------------|------------------|----|--|--|
|  |     |            | Inhibited        | and Uninhibited  |    |  |  |
|  |     |            | Transform        | ner Oil          |    |  |  |
|  | 2.4 | Dissolved  | Gas Anal         | ysis (DGA)       | 12 |  |  |
|  |     | 2.4.1      | Gas Chro         | omatography      | 13 |  |  |
|  |     |            | Method           |                  |    |  |  |
|  |     | 2.4.2      | DGA Inte         | erpretation      | 14 |  |  |
|  |     |            | Analysis         |                  |    |  |  |
|  |     |            | 2.4.2.1          | IEEE Limits      | 14 |  |  |
|  |     |            | 2.4.2.2          | Duval Pentagon   | 15 |  |  |
|  |     |            |                  | Method (DPM)     |    |  |  |
|  | 2.5 | Stray Gas  | sing (SG)        |                  | 17 |  |  |
|  | 2.6 | Machine    | Learning         |                  | 18 |  |  |
|  |     | 2.6.1      | Ensemble         | e Methods for    | 19 |  |  |
|  |     |            | Machine Learning |                  |    |  |  |
|  |     |            | 2.6.1.1          | Boosting         | 20 |  |  |
|  |     |            | 2.6.1.2          | Subspace         | 20 |  |  |
|  |     |            | 2.6.1.3          | Random Under     | 20 |  |  |
|  |     |            |                  | Sampling (RUS)   |    |  |  |
|  |     |            |                  | Boost            |    |  |  |
|  |     | 2.6.2      | Machine          | Learning         | 21 |  |  |
|  |     |            | Algorithm        | ns               |    |  |  |
|  |     |            | 2.6.2.1          | Decision Tree    | 21 |  |  |
|  |     |            | 2.6.2.2          | K-Nearest        | 22 |  |  |
|  |     |            |                  | Neighbors        |    |  |  |
|  |     |            |                  | (KNN)            |    |  |  |
|  | 2.7 | Data Pre-  | Processing       | 5                | 23 |  |  |
|  | 2.7 | 2.7.1      | Undersan         | npling Method    | 23 |  |  |
|  |     | 2.7.2      | Oversamj         | pling Method     | 23 |  |  |
|  | 2.8 | Previous ' | Works            |                  | 24 |  |  |
|  |     | 2.8.1      | Root Cau         | ise of Different | 24 |  |  |
|  |     |            | Gassing H        | Pattern in       |    |  |  |
|  |     |            | Transform        | ner Oil          |    |  |  |
|  |     | 2.8.2      | Machine          | Learning         | 25 |  |  |
|  |     |            | Algorithm        | ns related to    |    |  |  |

viii

|   |           |       |           | Transform  | mer Fault and    |    |
|---|-----------|-------|-----------|------------|------------------|----|
|   |           |       |           | Stray Ga   | ssing            |    |
|   |           |       |           | Interpreta | ation            |    |
|   |           |       | 2.8.3     | Summar     | ization of       | 27 |
|   |           |       |           | Previous   | s Works          |    |
|   |           | 2.9   | Contribu  | ution of R | esearch          | 31 |
| ( | CHAPTER 3 | METHO | ODOLOG    | GY         |                  | 32 |
|   |           | 3.1   | Overvie   | w          |                  | 32 |
|   |           | 3.2   | Propose   | d Method   | ology            | 32 |
|   |           |       | 3.2.1     | Phase 1    | – DGA            | 34 |
|   |           |       |           | Interpret  | tation and SG    |    |
|   |           |       |           | Experim    | ent              |    |
|   |           |       | 3.2.2     | Phase 2    | – Data           | 34 |
|   |           |       |           | Preproce   | ess and ML       |    |
|   |           |       |           | Models     | Development      |    |
|   |           |       | 3.2.3     | Phase 3    | – ML Models'     | 35 |
|   |           |       |           | Perform    | ance Validation  |    |
|   |           | 3.3   | Calculat  | ion of DP  | M                | 35 |
|   |           |       | Interpret | tation     |                  |    |
|   |           | 3.4   | Planning  | g of Stray | Gassing Test     | 37 |
|   |           |       | 3.4.1     | Experim    | ent Procedures   | 37 |
|   |           |       |           | 3.4.1.1    | Pre-drying       | 39 |
|   |           |       |           |            | Process of       |    |
|   |           |       |           |            | Glassware        |    |
|   |           |       |           |            | Apparatus and    |    |
|   |           |       |           |            | Transformer      |    |
|   |           |       |           |            | Materials        |    |
|   |           |       |           | 3.4.1.2    | Heating          | 40 |
|   |           |       |           |            | Process of       |    |
|   |           |       |           |            | Insulation Oils  |    |
|   |           |       |           |            | and Materials    |    |
|   |           | 3.5   | Building  | g of Mach  | ine Learning     | 42 |
|   |           |       | Model     | -          | 5                |    |
|   |           | 3.6   | MATLA     | AB Classif | fication Learner | 43 |

ix

|           |        | 3.6.1    | Steps to    | Use MATLAB      | 44 |
|-----------|--------|----------|-------------|-----------------|----|
|           |        |          | Classific   | ation Learner   |    |
|           |        |          | App         |                 |    |
|           |        | 3.6.2    | Confusio    | on Matrix       | 50 |
|           |        | 3.6.3    | Machine     | Learning        | 51 |
|           |        |          | Formula     | S               |    |
|           |        |          | 3.6.3.1     | Boosted Trees   | 51 |
|           |        |          | 3.6.3.2     | RUSBoosted      | 51 |
|           |        |          |             | Trees           |    |
|           |        |          | 3.6.3.3     | Subspace        | 52 |
|           |        |          |             | KNN             |    |
|           |        | 3.6.4    | SMOTE       | Tomek           | 53 |
|           |        | 3.7      | Summar      | у               | 53 |
| CHAPTER 4 | RESULT | TS, ANA  | LYSIS A     | ND              | 54 |
| I         | DISCUS | SION     |             |                 |    |
| 2         | 4.1    | Overviev | N           |                 | 54 |
| 4         | 4.2    | Determir | nation of I | DPM Method      | 54 |
|           |        | Accuracy | y           |                 |    |
|           | 4.3    | Stray Ga | ssing Exp   | periment        | 57 |
|           |        | 4.3.1    | DGA Re      | sults           | 57 |
|           |        | 4.3.2    | Stray Ga    | ssing           | 63 |
|           |        |          | Experim     | ent Outcome     |    |
|           |        |          | Validatio   | on with Similar |    |
|           |        |          | Research    | 1               |    |
|           |        |          | 4.3.2.1     | Comparison      | 63 |
|           |        |          |             | between         |    |
|           |        |          |             | Transformer     |    |
|           |        |          |             | Oil             |    |
|           |        |          | 4.3.2.2     | Comparison      | 64 |
|           |        |          |             | between         |    |
|           |        |          |             | Insulation      |    |
|           |        |          |             | Paper           |    |
|           |        |          |             | Immersed in     |    |

|     |          |           | Transformer       |    |
|-----|----------|-----------|-------------------|----|
|     |          |           | Oil               |    |
|     |          | 4.3.2.3   | Comparison        | 65 |
|     |          |           | between Core      |    |
|     |          |           | Metal             |    |
|     |          |           | Immersed in       |    |
|     |          |           | Transformer       |    |
|     |          |           | Oil               |    |
|     |          | 4.3.2.4   | Findings from     | 67 |
|     |          |           | Comparison        |    |
| 4.4 | Applicat | ion of Ma | achine Learning   | 67 |
|     | to Impro | ve DPM    | Interpretation    |    |
|     | 4.4.1    | Develop   | oment of          | 68 |
|     |          | Machine   | e Learning        |    |
|     |          | Models    | with Initial Data |    |
|     | 4.4.2    | Develop   | oment of          | 71 |
|     |          | Machine   | e Learning        |    |
|     |          | Models    | with Resampled    |    |
|     |          | Data      |                   |    |
|     | 4.4.3    | Testing   | of Machine        | 74 |
|     |          | Learning  | g Models          |    |
|     |          | Develop   | ed with Initial   |    |
|     |          | Data      |                   |    |
|     | 4.4.4    | Testing   | of Machine        | 77 |
|     |          | Learning  | g Models          |    |
|     |          | Develop   | bed with          |    |
|     |          | Resamp    | led Data          |    |
|     | 4.4.5    | Compar    | ison Between      | 79 |
|     |          | Perform   | ance of Data      |    |
|     |          | Before a  | and After         |    |
|     |          | Resamp    | ling Process      |    |
|     | 4.4.6    | Determi   | nation of the     | 81 |
|     |          | Best Alg  | gorithm           |    |

xi

| 4.4.7 | Graphical User Interface | 82 |
|-------|--------------------------|----|
|       | (GUI) Design             |    |

| CHAPTER 5 | CON  | 85             |    |
|-----------|------|----------------|----|
|           | 5.1  | Conclusion     | 85 |
| :         | 5.2  | Recommendation | 86 |
|           | REFE | CRENCES        | 87 |
|           | APPE | INDICES        | 95 |

xii

# LIST OF TABLES

| 2.1  | Classification of Transformer Oil                     | 9  |
|------|-------------------------------------------------------|----|
| 2.2  | Advantages and Disadvantages of Inhibited and         | 12 |
|      | Uninhibited Oil                                       |    |
| 2.3  | Permissible Concentrations of Dissolved Gases in Oil  | 13 |
| 2.4  | IEEE Limits for Dissolved Gas Concentrations          | 15 |
| 2.5  | Previous Works Summary                                | 27 |
| 4.1  | Comparison of Verified Transformer Conditions with    | 55 |
|      | DPM Interpreted Transformer Conditions based on       |    |
|      | DGA                                                   |    |
| 4.2  | Tabulation of DPM Accuracy in Interpreting            | 57 |
|      | Transformer Conditions based on DGA                   |    |
| 4.3  | Uninhibited Oil DGA Tabulation                        | 58 |
| 4.4  | Uninhibited Oil with Insulation Paper DGA Tabulation  | 58 |
| 4.5  | Uninhibited Oil with Core Metal DGA Tabulation        | 59 |
| 4.6  | Uninhibited Oil with Gasket DGA Tabulation            | 59 |
| 4.7  | Inhibited Oil DGA Tabulation                          | 60 |
| 4.8  | Inhibited Oil with Insulation Paper DGA Tabulation    | 61 |
| 4.9  | Inhibited Oil with Core Metal DGA Tabulation          | 61 |
| 4.10 | Inhibited Oil with Gasket DGA Tabulation              | 62 |
| 4.11 | Quantity of Data for Each Transformer Condition       | 68 |
| 4.12 | Train Comparison of Algorithms for Initial Data       | 70 |
| 4.13 | Quantity of Data for Each Transformer Condition after | 71 |
|      | Resampling                                            |    |
| 4.14 | Train Comparison of Algorithms for Resampled Data     | 73 |
| 4.15 | Test Comparison of Algorithms for Initial Data        | 76 |
| 4.16 | Test Comparison of Algorithms for Resampled Data      | 78 |



| 4.17 | Comparison Between Performance of Algorithms for | 79 |
|------|--------------------------------------------------|----|
|      | Training Stage                                   |    |
| 4.18 | Comparison Between Performance of Algorithms for | 80 |
|      | Testing Stage                                    |    |

# LIST OF FIGURES

| 2.1  | Structure of Hermetically Sealed Transformer          | 7    |
|------|-------------------------------------------------------|------|
| 2.2  | Structure of Conservator Tank Transformer             | 8    |
| 2.3  | Chemical Structural of Mineral Transformer Oil        | 9    |
| 2.4  | Oxidation Rates of Oil                                | 10   |
| 2.5  | Chemical Structure of DBPC                            | 11   |
|      | (2, 6-ditertiary-butyl para-cresol)                   |      |
| 2.6  | Basic Design of GC                                    | 14   |
| 2.7  | The Duval Pentagon 1 for The Six 'Basic' Faults       | 16 H |
| 2.8  | The Duval Pentagon 2 for The Three 'Basic' Electrical | 17   |
|      | Faults and Four 'Advanced' Thermal Faults             |      |
| 3.1  | Overall Research Flowchart                            | 33   |
| 3.2  | Example of Duval Pentagon Representation              | 36   |
| 3.3  | Flowchart for Conducting of Experiment                | 38   |
| 3.4  | Laboratory Oven for Heating Process                   | 39   |
| 3.5  | Transformer Materials for Stray Gassing Test          | 40   |
| 3.6  | Dried Materials Placed in Sparged Insulating Oil      | 40   |
| 3.7  | Set-up for Sparging of Transformer Oil                | 41   |
| 3.8  | Heating of Oil Samples in Oven                        | 42   |
| 3.9  | Gas Chromatograph Varian Star 3400CX for DGA Test     | 42   |
| 3.10 | Block Diagram for Building the Machine Learning       | 43   |
|      | Model based on Initial Data                           |      |
| 3.11 | Block Diagram for Building the Machine Learning       | 43   |
|      | Model based on Resampled Data                         |      |
| 3.12 | Classification Learner App in MATLAB Software         | 44   |
| 3.13 | Function for Importing Dataset                        | 44   |
| 3.14 | Selection of Dataset File                             | 45   |
| 3.15 | Import Selection Window for Trained Data              | 45   |



| 3.16 | New Session from File Window                      | 46 |
|------|---------------------------------------------------|----|
| 3.17 | Model Development Algorithms and Confusion Matrix | 47 |
|      | Plot Function                                     |    |
| 3.18 | Confusion Matrix and Validation Accuracy          | 47 |
| 3.19 | Test Data Import Function Key                     | 48 |
| 3.20 | Import Selection Window for Test Data             | 48 |
| 3.21 | Import Test Data Window                           | 49 |
| 3.22 | Test Function Key for Model Testing               | 49 |
| 3.23 | 3×3 Confusion Matrix Representation               | 50 |
| 4.1  | Comparison between Fault Gases in                 | 64 |
|      | (a) Uninhibited Oil, (b) Inhibited Oil,           |    |
|      | of Current Experiment with TNBR Experiment        |    |
| 4.2  | Comparison between Fault Gases in                 | 65 |
|      | (a) Uninhibited Oil, (b) Inhibited Oil,           |    |
|      | mixed with Insulation Paper of Current Experiment |    |
|      | with TNBR Experiment                              |    |
| 4.3  | Comparison between Fault Gases in                 | 66 |
|      | (a) Uninhibited Oil, (b) Inhibited Oil,           |    |
|      | mixed with Core Metal of Current Experiment with  |    |
|      | TNBR Experiment                                   |    |
| 4.4  | Confusion Matrix for                              | 69 |
|      | (a) Boosted Trees, (b) RUSBoosted Trees,          |    |
|      | (c) Subspace KNN Algorithm of Initial Data        |    |
| 4.5  | Confusion Matrix for                              | 72 |
|      | (a) Boosted Trees, (b) RUSBoosted Trees,          |    |
|      | (c) Subspace KNN Algorithm of Resampled Data      |    |
| 4.6  | Test Confusion Matrix for                         | 74 |
|      | (a) Boosted Trees, (b) RUSBoosted Trees,          |    |
|      | (c) Subspace KNN Algorithm of Initial Data        |    |
| 4.7  | Test Confusion Matrix for                         | 77 |
|      | (a) Boosted Trees, (b) RUSBoosted Trees,          |    |
|      | (c) Subspace KNN Algorithm of Resampled Data      |    |

| 4.8  | GUI for Developed Web Application to Interpret | 82 |
|------|------------------------------------------------|----|
|      | Transformer Condition based on DGA             |    |
| 4.9  | GUI showing 'Normal' Condition                 | 83 |
| 4.10 | GUI showing 'Stray Gassing' Condition          | 84 |

# LIST OF SYMBOLS AND ABBREVIATIONS

| $d_j$                         | -   | Disjoint                            |
|-------------------------------|-----|-------------------------------------|
| Log <sub>10</sub>             | -   | Logarithm with base 10              |
| Xj                            | -   | Attribute                           |
| Xj, <b>j</b>                  | -   | Fixed attributes set of j           |
| %                             | -   | Percentage                          |
| E                             | -   | Epsilon                             |
| °C                            | -   | Degree Celsius                      |
| Σ                             | -   | Summation                           |
| ¥                             | -   | Unequal                             |
| AI                            | -   | Artificial intelligence             |
| AID                           | -   | Automatic interaction and detection |
| ANN                           | -   | Artificial neural network           |
| CART                          | -   | Classification and regression tree  |
| CH4                           | - 5 | Methane                             |
| C <sub>2</sub> H <sub>2</sub> | 05  | Acetylene                           |
| C <sub>2</sub> H <sub>4</sub> | -   | Ethylene                            |
| C2H6                          | -   | Ethane                              |
| СО                            | -   | Carbon monoxide                     |
| CO <sub>2</sub>               | -   | Carbon dioxide                      |
| D                             | -   | Dataset                             |
| DBPC                          | -   | 2, 6-ditertiary-buthyl para-cresol  |
| DGA                           | -   | Dissolved gas analysis              |
| DPM                           | -   | Duval pentagon method               |
| DRM                           | -   | Dornenburg ratio method             |
| DTM                           | -   | Duval triangle method               |
| FNR                           | -   | False Negative Rate                 |
| GC                            | -   | Gas chromatograph                   |



| GUI            | -   | Graphical User Interface                          |
|----------------|-----|---------------------------------------------------|
| H <sub>2</sub> | -   | Hydrogen                                          |
| IEC            | -   | International Electrotechnical Commission         |
| IEEE           | -   | Institute of Electrical and Electronics Engineers |
| IPSO           | -   | Improved particle swarm optimization              |
| KNN            | -   | K-nearest neighbors                               |
| <b>O</b> 2     |     | Oxygen                                            |
| LSTM           | -   | Long short-term memory                            |
| mL             | -   | Milli Litre                                       |
| OLTC           | -   | On load tap changer                               |
| ppm            | -   | Parts per million                                 |
| PSO            | -   | Particle swarm optimization                       |
| RF             | -   | Random Forest                                     |
| RRM            | -   | Rogers ratio method                               |
| RUS            | -   | Random under sampler                              |
| S              | -   | Set                                               |
| SG             | -   | Stray gassing                                     |
| SMOTE          | -   | Synthetic Minority Oversampling Technic           |
| SVM            | -   | Support vector machine                            |
| TNBR           | -   | Tenaga Nasional Berhad-Research                   |
| TPR            | - 9 | True Positive Rate                                |
|                |     |                                                   |



# LIST OF APPENDICES

# APPENDIX

# TITLE

# PAGE

| А | Gas Chromatograph Calibration Results  | 94 |
|---|----------------------------------------|----|
| В | Transformer Oil Certificate of Quality | 96 |
|   | (Uninhibited)                          |    |
| С | Transformer Oil Certificate of Quality | 97 |
|   | (Inhibited)                            |    |
| D | VITA                                   | 98 |
|   |                                        |    |

# **CHAPTER 1**

### INTRODUCTION

## 1.1 Project Background



A transformer is a static electrical component with no moving parts that are used for stepping up or down or isolating one circuit from another. The transformer voltage can be stepped up during long-distance transmission and stepped down for commercial or industrial use with very low losses [1]. Due to this functionality, the transformer becomes one of the most important pieces of equipment in an electrical system. Although there is an emergence of dry-type transformers in this generation, but oil-immersed transformers still hold the majority among the transformer type used in our country due to the long-lasting characteristic which can be maintained and repaired when necessary. Fuji Electric claims that the life expectancy of an oil-filled transformer is about 30 years [2]. However, the transformers might still begin to generate failure signals during the servicing period if proper maintenances are not provided. This situation might further lead to huge financial losses and at the same time cause damages and shorten the servicing lifetime of the transformers. A statistical assessment [3] shows that most of the failures in the transformer are related to insulation, where 33.9% are located at the tap changer and 32.1% are located at the winding. These failures should be able to be detected earlier if proper maintenance action is conducted, which can extend the servicing period of the transformers. Unfortunately, due to the lack of proper maintenance, 35.7% of the transformers were scrapped due to the incapable of repairing when failures occur [3].

One of the best diagnostic methods for oil-immersed transformers is the DGA. DGA is a widely used technique to estimate the condition of oil-immersed transformers. The measurement of the level and the changes of combustible gases in insulating oil, which include methane ( $CH_4$ ), ethane ( $C_2H_6$ ), ethylene ( $C_2H_4$ ), acetylene ( $C_2H_2$ ), carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), and hydrogen ( $H_2$ ) is a trustworthy diagnostic tool which can be used as an indicator of undesirable events occurring inside the transformer. Faults happening inside the transformers such as hot spots, electrical arcing, or partial discharge can be predicted based on the increment of the combustible gases in the transformer oil. Therefore, the identification of these gases being generated by a particular unit can provide useful information for a condition-based maintenance program [4].

Many interpretation methods for DGA had been researched to be used as handy tools for analysing the condition of the oil-insulated equipment. Some examples of the widely used interpretation methods are Key Gas Method, Dornenburg ratio method (DRM), Rogers ratio method (RRM) [5], IEC gas ratio method, Duval triangle method (DTM) and DPM [6]. In the early stage, the interpretation methods such as the Key Gas Method, DRM and RRM mainly focus on the basic transformer faults, such as partial discharge (PD), thermal fault, or arcing fault. This is due to less research had been conducted on the SG characteristic of oil-insulated equipment. The percentage reliability of the interpretation methods is also varied and comparably low. Besides, external factors such as differences in the rated voltage level of transformers will also affect the reliability of these interpretation methods [7]. Later, with more concerns being rose against the stray gassing event in the oil-insulated equipment, the DTM method was updated in 2008 with 2 new Triangle, named Duval Triangle 4 and 5 to be used for the low-temperature faults which covers the stray gassing event. The DPM was also introduced in 2014 by Duval, M. to deal with this gassing characteristic, six basic transformer faults, and stray gassing in mineral oil. This method proved to be accurate in predictions and consistent for various types of transformers, as shown in [8].

The emergence of machine learning as the ideal tool to carry out the intelligent monitoring and analysis system provides the possibility for the DGA interpretation accuracy to be further enhanced. Through the use of various machine learning algorithms, the accuracy of various interpretation methods was shown to be improved, such as in [9] [10]. Many different ML algorithms had also been implemented, such as the artificial neural networks (ANN), k-nearest neighbour (KNN), support vector machine (SVM), decision tree, and even deep learning algorithms to improve the prediction accuracy of different interpretation methods [11].

## **1.2 Problem Statement**

In recent years, it was found that certain gases formed and dissolved in insulating oil are not due to incipient faults in the transformers. Based on the initial investigation and assessment conducted, no abnormalities were found in the transformer. In addition, the loading pattern of these transformers were relatively low compared to its design rating capacity and no defects in the external cooling system were found. One of the possible causes of the formation of these combustible gases was due to SG phenomenon which is a natural event [12]. According to statistics on the power transformer population installed at Tenaga Nasional Berhad (TNB) transmission and distribution substation, on average 600 transformers were found to have high combustible gases over the last three years [13]. Without an accurate diagnostic assessment, field engineers may take unnecessary maintenance action and later increase the operation maintenance cost. One of the examples is that the increment of  $H_2$  gas in the transformers is often mistakenly attributed to corona partial discharge [14]. Thus, a method of interpretation for stray gassing is required to identify this stray gassing phenomenon.



The SG test is the most reliable method used by industries to identify the SG phenomenon accurately. However, this method of testing as stated in the ATSM D7150 standard [15] and CIGRE Technical Brochure #771 [16] required a very long heating time of up to 164 hours to obtain the SG result, which turn out to be very inefficient. Therefore, DGA interpretation methods gain the advantage to be able to interpret the transformers' condition based on the DGA result in a short time. Among the DGA interpretation methods, the Duval Triangle Method (DTM) and DPM are the most used interpretation tools which cover the SG identification. However, a study by Kim, S. et al. [17] showed that the Duval triangle 4, Duval triangle 5, and Duval pentagon were only capable of identifying 67.4%, 45.7%, and 58.7% of the SG phenomenon accurately. The low percentage of interpretation accuracy does not allow the interpretation tool to be utilised as a reliable alternative for identifying the SG of transformer oils. Therefore, the problems above rise the concern of the need for an interpretation method that must be accurate and fast when making the interpretation of the SG phenomenon.

ML had been utilised as one of the effective ways to improve the DGA interpretation methods. However, works involving the use of ML to improve the DGA interpretation were mostly focused only on the transformer faults, whereby the SG phenomenon was excluded. This was shown in the study by Rao, U. M. et al. [18] where the SG condition was purposely excluded when building the ML classification model to prevent the SG data from interrupting and confusing the fault classification. Another study by Saravanan, D. et al. [10] also classified only the transformer faults by using the SVM and multilayer ANN and did not include the SG phenomenon. Thus, there is a need to have a ML model which can classify both transformer faults and SG conditions to be more practical when used to interpret actual transformer conditions based on the DGA.

Besides identifying the condition of oil-immersed transformers, whenever faults or SG activities were found within the transformers, it is also important to identify the root cause for the generation of specific gases, which can help the site engineers to decide the necessity to solve the gassing phenomenon and also to reduce the time taken for checking and repairing the transformers. Therefore, studies had been done to identify various root causes for the transformer gassing phenomenon. A study by I. Atanasova-Hohlein [19] investigated the root cause for the gassing characteristic of transformer oil due to the influence of copper material. Another study by Gao, S. H. et al. [20] had investigated the benzotriazole metal passivator (BTA) as the root cause of abnormal dissolved gases generation, especially CO,  $CO_2$  and  $H_2$  in the transformer oil. However, as there are still many other transformer materials that were not being investigated, it is crucial to experiment with those transformer materials to understand about the gassing effect caused by those materials.

The problems stated above contributed to the idea in this research work to develop an analysing tool for the transformer conditions which is fast and accurate using a ML algorithm. The tool developed was able to differentiate whether the transformer is in normal condition, build-up of stray gases, or faulty condition. Moreover, the tool was also able to determine the root cause of gases formation in the transformer and the possible formation of stray gases based on the outcome of the laboratory findings on three different transformer materials, which are insulation paper, transformer ferrite core and gasket. Thus, cost savings in the operation and maintenance of the transformer could be achieved, due to avoidance of unnecessary maintenance action taken.



#### 1.3 **Objectives**

The aims of the project are as follows:

- i. To analyse the transformer oil based on the Duval pentagon interpretation method and determine the gassing characteristic of the dissolved gases.
- ii. To develop a machine learning model with MATLAB classification learner app by the ensemble-based algorithm for the interpretation of transformer conditions from the dissolved gases.
- iii. To analyse the performance of the developed machine learning model in terms of percentage of accuracy to interpret actual transformer conditions.

#### 1.4 **Project Scopes/ Limitations**

The scopes of the project are as follows:

- Dissolved gases investigated in this project included  $CH_4$ ,  $C_2H_6$ ,  $C_2H_4$ ,  $C_2H_2$ , CO.  $CO_2$ , and H. i.  $C_2H_2$ , CO,  $CO_2$ , and  $H_2$ .
- DGA method was used to identify the gases in the transformer oil. ii.
- iii. DGA data were collected from oil samples of real transformers from local power utilities.
- iv. Transformers were rated 33kV and below, 3-phase, and oil samples were collected from the main tank of transformers.
- The gas data were analysed by using DPM. v.
- vi. Transformer materials that were investigated include transformer ferrite core, winding paper insulation, and main tank gasket seal.
- vii. Transformer oil used were Hyrax Hypertrans HR Inhibited Transformer Oil, and Hyrax Hypertrans Uninhibited Transformer Oil.
- viii. Temperature for the stray gassing experiment was set at 60°C, 80°C, and 100°C.
- ix. Ensemble-based algorithms, which are boosted trees, RUS boosted trees, and subspace KNN were used to develop the machine learning models to perform analysis of transformer's conditions based on DGA.

#### REFERENCES

- 1. Kiameh, P. Electrical Equipment Handbook: Troubleshooting and Maintenance: McGraw-Hill. 2003.
- Fuji Electric. (2016). fujielectric,co,in. Retrieved on March 20, 2021, from https://fujielectric.co.in/wp-content/uploads/2016/11/oil-filled-transformerlife-assessment-catalogueEnglish.pdf
- Tenbohlen, S., Valhidi, F., Gebauer, J., Kruger M. and Muller, P. Assessment of Power Transformer Reliability. XVII International Symposium on High Voltage Engineering. Hannover, Germany. 2011. pp. 1-6.
- 4. Duval, M. Dissolved Gas Analysis: It Can Save Your Transformer. IEEE Electrical Insulation Magazine. 1989. 5(6): 22-27. doi: 10.1109/57.44605.
- Ward, S. Evaluating Transformer Condition Using DGA Oil Analysis. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. 2003. pp. 463-468. doi: 10.1109/CEIDP.2003.1254893.
- Wanjare, S. B. and Swani, P. S. DGA Interpretation for Increasing the Percent Accuracy by Different Methods: A Review. 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). 2018. pp. 458-461. doi: 10.1109/ICCPEIC.2018.8525179.
- Ashkezari, A. D., Saha, T. K., Ekanayake, C. and Ma, H. Evaluating the Accuracy of Different DGA Techniques for Improving the Transformer Oil Quality Interpretation. AUPEC. 2011. pp. 1-6.
- Pattanadech, N. and Wattakapaiboon, W. Application of Duval Pentagon Compared with Other DGA Interpretation Techniques: Case Studies for Actual Transformer Inspections Including Experience from Power Plants in Thailand. 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST). 2019. pp. 1-4. doi: 10.1109/ICEAST.2019.8802523.
- 9. Guo, C., Dong, M. and Wu, Z. Fault Diagnosis of Power Transformers Based on Comprehensive Machine Learning of Dissolved Gas Analysis. 2019 IEEE

20th International Conference on Dielectric Liquids (ICDL). 2019. pp. 1-4. doi: 10.1109/ICDL.2019.8796553.

- Saravanan, D., Hasan, A., Singh, A., Mansoor, H. and Shaw, R. N. Fault Prediction of Transformer Using Machine Learning and DGA. 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). 2020. pp. 1-5. doi: 10.1109/GUCON48875.2020.9231086.
- Chatterjee, K., Jadoun, V. K. and Jarial, R. K. Emerging Trends for Determining Incipient Faults by Dissolved Gas Analysis. 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). 2017. pp. 63-68. doi: 10.1109/CATCON.2017.8280185.
- Sclater, N. Handbook of Electrical Design Details. 2nd Ed. McGraw-Hill. 2003.
- 13. Transformer Performance Report 2001-2010. TNB Transmission. 2011.
- Duval, M. and Heizmann, T. Identification of Stray Gassing of Inhibited and Uninhibited Mineral Oils in Transformers. Energies. 2020. 13(15).
- ASTM International. Standard Test Method for the Determination of Gassing Characteristics of Insulating Liquirds Under Thermal Stress. West Conshohocken, PA, D7150-13. 2020. doi: 10.1520/D7150-13R20.

16. CIGRE. Advances in DGA Interpretation #771. Paris, France. D1/A2.47. 2019.

- Kim, S., Seo, H. and Jung, J. Advanced Dissolved Gas Analysis Method With Stray Gassing Diagnosis. 2016 International Conference on Condition Monitoring and Diagnosis (CDM). 2016. pp. 522-525. doi: 10.1109/CMD.2016.7757877.
- Rao, U. M., Fofana, I., Rajesh, K. N. V. P. S. and Picher, P. Identification and Application of Machine Learning Algorithms for Transformer Dissolved Gas Analysis. IEEE Transactions on Dielectrics and Electrical Insulation. 2021. 28(5): 1828-1835. doi: 10.1109/TDEI.2021.009770.
- Atanasova-Höhlein, I. Influence of Copper on Gassing Properties of Transformer Insulating Liquids. IEEE Electrical Insulation Magazine. 2019. 35(6): 5-22. doi: 10.1109/MEI.2019.8878256.
- 20. Gao, S. H., Zeng, X. S. and Zhang, G. W. Effects of Metal Passivator Degradation on the Dissolved Gases Characteristics of Oil in Oil-immersed

Transformers. IEEE Transactions on Dielectrics and Electrical Insulation. 2021. 28(5): 1735-1742. doi: 10.1109/TDEI.2021.009524.

- IEEE Standard Terminology for Power and Distribution Transformers. IEEE Std C57.12.80-2010 (Revision of IEEE Std C57.12.80-2002). 2010.
- 22. Joshi, H. Residential, Commercial and Industrial Electrical Systems: Equipment and Selection, Volume 1. New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney and Toronto. McGraw-Hill Education (India) Private Limited. 2008.
- Iran Transfo. (2017). Iran Transfo Corp. Retrieved on March 30, 2021, from http://www.iran-transfo.com/en/hermetically\_sealed.php
- 24. APOGEEWEB. (2019). Apogeeweb Semiconductor. Retrieved on March 30, 2021, from https://www.apogeeweb.net/article/1999.html
- Nunn, T. A Comparison of Liquid-Filled and Dry-Type Transformer Technologies. 2000 IEEE-IAS/PCA Cement Industry Technical Conference. 2020. pp. 105-112. doi: 10.1109/CITCON.2000.848515.
- Suwarno, S. and Pasaribu, R. A. Thermal Aging of Mineral Oil- Paper Composite Insulation for High Voltage Transformer. International Journal on Electrical Engineering and Informatics. 2016. pp. 820-835. doi: 10.15676/IJEEI.2016.8.4.9.
- 27. Markets, M. A. Transformer Oil Market by Types (Mineral Oil -Naphthenic & Paraffinic, Silicone and Bio-Based), Applications (Small & Large Transformers, Utility) & Geography, Global Industry Trends & Forecast to 2017. MarketsandMarkets. 2017.
- Siemens. Transforming Future Trends into Innovations: Siemens Alternative Insulating Liquid Transformers. Germany. Siemens AG Energy Sector. 2014.
- Xiaobo, W., Chao, T., Bo, H., Jian, H. and Chen, G. Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers. Energies. 2018. 11(3): 487. doi: https://doi.org/10.3390/en11030487.
- Shell. Shell Diala Transformer Oil Handbook, Shell Diala Makes It Possible. Shell Lubricants. 2016.
- International Electrotechnical Commission. TC 10 Fluids for Electrotechnical Applications-Mineral Insulating Oils for Electrical Equipment. IEC60296. 2020.

- Doble. Transformer Oil Purchase Specifications. Walnut Street, Watertown, MA. Auspices of the Doble Oil Committee. 2017.
- Chevron. Transformer Oil Inhibited Efficient Performance. UK. A Chevron Company Product. 2010.
- CAS RN:128-37-0, D0228 2,6-Di-tert-butyl-p-cresol. TCI. Retrieved on April 1, 2021, from https://www.tcichemicals.com/TH/en/p/D0228
- IEEE Guide for Dissolved Gas Analysis in Transformer Load Tap Changers. IEEE Std C57.139-2010. 2011.
- Pabla, A. S. Electric Power Distributuon. 6th Ed. New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney and Toronto. McGraw-Hill Educations. 2011.
- Duval, M. New Techniques for Dissolved Gas-In-Oil Analysis. IEEE Electrical Insulation Magazine. 2003. 19(2): 6-15. doi: 10.1109/MEI.2003.1192031.
- Dhole, V. and Kadam, V. Advantages of the Toga- Transformer Oil Gas Analyzer Involving Headspace-GC Analysis and A DGA System, Application Note 10348. Thermo Fisher Scientific Inc. 2012.
- Bakar, N. A. High Voltage Power Transformer Dissolved Gas Analysis, Measurement and Interpretation Techniques. High Voltage Maintenance Forum 2013. Malacca, 2013.
- 40. Basu, N. et al. Effect of Transformer Oil Reconditioning on Oil Properties and Dissolved Gases. 2020 IEEE 17th India Council International Conference (INDICON). 2020. pp. 1-5. doi: 10.1109/INDICON49873.2020.9342501.
- IEEE Guide for the Detection and Determination of Generated Gases in Oil-Immersed Transformers and Their Relation to the Serviceability of the Equipment. ANSI/IEEE Std. C57.104-1978. 1978. doi: 10.1109/IEEESTD.1978.81383.
- Bakar, N. A., Abu-Siada, A. and Islam, S. A Review of Dissolved Gas Analysis Measurement and Interpretation Techniques. IEEE Electrical Insulation Magazine. 2014. 30(3): 39-49. doi: 10.1109/MEI.2014.6804740.
- 43. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers. IEEE Std C57.104-2019 (Revision of IEEE Std C57.104-2008).
  2019. doi: 10.1109/IEEESTD.2019.8890040.

- 44. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers. IEEE Std C57.104-2008 (Revision of IEEE Std C57.104-1991).
  2009. doi: 10.1109/IEEESTD.2009.4776518.
- 45. Farooque, M. U., Wani, S. A. and Khan, S. A. Artificial Neural Network (ANN) Based Implementation of Duval Pentagon. 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). 2015. pp. 46-50. doi: 10.1109/CATCON.2015.7449506.
- Scatiggio, F., Pompili, M. and Bartnikas, R. Effects of Metal Deactivator Concentration Upon the Gassing Characteristics of Transformer Oils. IEEE Trans. on Dielec. And Elec. Insul. 2011. 18(3): 701-706. doi: 10.1109/TDEI.2011.5931055.
- Casserly, E. and Rasco, J. M. Stray Gassing of Refinery Streams and Transformer Oil Produced from Them. 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). 2014. pp. 1-4. doi: 10.1109/ICDL.2014.6893100.
- Kadre, S. and Konosani, V. R. 1.2. Building Blocks of A Machine Learning Project, Machine Learning and Deep Learning Using Python and TensorFlow. 1st Ed. McGraw-Hill. 2021.
- Mueller, J. P. and Massaron, L. Machine Learning for Dummies. 2nd Ed. Canada. John Wiley & Sons Inc. 2021.
- 50. Alpaydin, E. Introduction: What is Machine Learning. Cambridge, Massachusetts, London, England. MIT Press. 2010.
- 51. Zhang, Y. New Advances in Machine Learning. Croatia: InTech. 2010.
- Dietterich, T. G. Ensemble Methods in Machine Learning. Berlin, Heidelberg. Springer. 2000. doi: 10.1007/3-540-45014-9\_1.
- 53. Zhou, Z. H. Ensemble Methods: Foundations and Algorithms. CRC Press. 2012.
- 54. Kadre, S. and Konosani, V. R. 7.5. Boosting, Machine Learning and Deep Learning Using Python and TensorFlow. 1st Ed. McGraw-Hill. 2021.
- Fukui, K. Subspace Methods, Computer Vision: A Reference Guide. Springer.
   2020. doi: 10.1007/978-3-030-03243-2\_708-1.
- 56. Ho, T. K. Nearest Neighbors in Random Subspaces. Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). 1998. pp. 640-648.

- 57. Hulse, J. V., Khoshgoftaar, T. M. and Napolitano, A. Experimental Perspectives on Learning from Imbalance Data. Proceedings of the 24<sup>th</sup> International Conference on Machine Learning (ICML). 2007. pp. 935-942. doi: https://doi.org/10.1145/1273496.1273614.
- 58. Mathworks. E. Algorithms. Retrieved on June 15, 2021, from https://www.mathworks.com/help/ststa/ensemble-algorithms.html#btfwpd3..
- Noor, N. S. E. M., Ibrahim, H., Lah, M. H. C. and Abdullah, J. M. Improving Outcome Prediction for Traumatic Brain Injury from Imbalanced Datasets Using RUSBoosted Trees on Electroencephalography Spectral Power. IEEE Access. 2021. pp. 121608-121631. doi: 10.1109/ACCESS.2021.3109780.
- 60. Greenwell, B. M. 1.2.1. A Brief History of Decision Tree, Tree-Based Methods for Statistical Learning in R. Chapman and Hall / CRC. 2022.
- Kadre, S. and Konosani, V. R. 1.3 Machine Learning Algorithms VS. Traditional Computer Programs, Machine Learning and Deep Learning Using Python and TensorFlow. 1st Ed. McGraw-Hill. 2021.
- Mueller, J. P. and Massaron, L. Chapter 4 Learning with K-Nearest Neighbors
   Considering the History of K-Nearest Neighbors, Data Science Programming All-in-One for Dummies. John Wiley & Sons. 2019.
- Gopal, M. 3.4 K-Nearest Neighbor (K-NN), Applied Machine Learning. 1st Ed. McGraw-Hill Education. 2019.
- 64. Fernandez, A., Garcia, S., Galar, M., Prati, R. C., Krawczyk, B. and Herrera,F. Learning from Imbalance Data Sets. 1st Ed. Springer. 2018.
- 65. Wang, Z., Wu, C., Zheng, K., Niu, X. and Wang, X. SMOTETomek-based Resampling for Personality Recognition. IEEE Access. 2019. 7(): 129678-129689. doi: 10.1109/ACCESS.2019.2940061.
- 66. He, H. and Ma, Y. Q. Imbalanced Learning Foundation, Algorithms and Applications. Wiley IEEE Press. 2013.
- Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research. 2002. pp. 321-357. doi: https://doi.org/10.1613/jair.953.
- Lance, P. J. G. and Lewand, R. Case Studies Involving Insulating Liquids and Materials from the Doble Materials Laboratories. USA. Doble. 2010.
- 69. Martin, D., Lelekakis, N., Wijaya, J., Duval, M and Saha, T. Investigations into the Stray Gassing of Oils in the Fault Diagnosis of Transformers. IEEE

Transactions on Power Delivery. 2014. 29(5): 2369-2374. doi: 10.1109/TPWRD.2014.2316501.

- Eeckhoudt, S., Autru, S. and Lerat, L. Stray Gassing of Transformer Insulating Oils: Impact of Materials, Oxygen Content, Additives, Incubation Time and Temperature, and Its Relationship to Oxidation Stability. IEEE Electrical Insulation Magazine. 2017. 33(6): 27-32. doi: 10.1109/MEI.2017.8085066.
- Gao, S., Zhang, G., Zeng, X., Ke, T. and Liu, Y. Investigation on the Effects of Irgamet 39 on Stray Gassing Generation in the Insulating Oil. 2021 IEEE Electrical Insulation Conference (EIC). 2021. pp. 614-617. doi: 10.1109/EIC49891.2021.9612302.
- Sungjik, K., Hwangdong, S. and Jaeryong, J. Advanced Dissolved Gas Analysis Method with Stray Gassing Diagnosis. 2016 International Conference on Condition Monitoring and Diagnosis (CMD). 2016. pp. 522-525. doi: 10.1109/CMD.2016.7757877.
- 73. Cheemala, V., Asokan, A. N. and Preetha, P. Transformer Incipient Fault Diagnosis Using Machine Learning Classifiers. 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). 2019. pp. 1-6. doi: 10.1109/CATCON47128.2019.CN0046.
- 74. Soto, A. R. E., Lima, S. L. and Saavedra, O. R. Incipient Fault Diagnosis in Power Transformers by DGA Using A Machine Learning ANN - Mean Shift Approach. 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). 2019. pp. 1-6. doi: 10.1109/ROPEC48299.2019.9057143.
- Mahrukh, A. W., Lian, G. X. and Bin, S. S. Prediction of Power Transformer Oil Chromatography Based on LSTM and RF Model. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). 2020. pp. 1-4. doi: 10.1109/ICHVE49031.2020.9279968.
- Li, J., Li, G., Hai, C. and Guo, M. Transformer Fault Diagnosis Based on Multi-Class Adaboost Algorithm. IEEE Access. 2022. pp. 1522-1532. doi: 10.1109/ACCESS.2021.3135467.
- ASTM International. Standard Test Methods for Compatibility of Construction Material with Electrical Insulating Oil of Petroleum Origin. West Conshohocken, PA, D3455-11. 2019. doi: 10.1520/D3455-11R19.

- Souza F. R. and Ramachandran B. Dissolved Gas Analysis to Identify Improve Reliability in Transformers Using Support Vector Machines. 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, USA. 2016. pp. 1-4.
- Duval, M. and Lamarre, L. The Duval Pentagon-A New Complementary Tool for the Interpretation of Dissolved Gas Analysis in Transformers. IEEE Electrical Insulation Magazine. 2014. 30(6): 9-12. doi: 10.1109/MEI.2014.6943428.
- IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers. IEEE Std C57.12.00-2021 (Revision of IEEE Std C57.12.00-2015). 2022. doi: 10.1109/IEEESTD.2022.9690124.
- Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V. and Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans. 2010. 40(1): 185-197.
- Ma, X., Yang, T., Chen, J. and Liu, Z. K-Nearest Neighbor Algorithm Based on Feature Subspace. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). 2021. pp. 225-228. doi: 10.1109/BDACS53596.2021.00056.
- Batista, G. E., Bazzan, A. L. C. and Monard, M. C. Balancing Training Data for Automated Annotation of Keywords: A Case Study. II Brazilian Workshop on Bioinformatics, Macae. 2003. pp. 10-18.
- 84. Sun, X. Y., Liu, D. H. and Bian, J. P. The Study of Fault Diagnosis Model of DGA for Oil-Immersed Transformer Based on SVM Active Learning and K-L Feature Extracting. 2008 International Conference on Machine Learning and Cybernetics. 2008. pp. 1510-1514. doi: 10.1109/ICMLC.2008.4620645.
- Li, J., Li, G., Hai, C. and Guo, M. Transformer Fault Diagnosis Based on Multi-Class Adaboost Algorithm. IEEE Access. 2022. 10(): 1522-1532. doi: 10.1109/ACCESS.2021.3135467.

# **APPENDIX D**

# VITA

The author was born on 19 January 1995 in Penang, Malaysia. He went to S.M.J.K. Chung Ling for his secondary school. He then enrolled to Universiti Tun Hussein Onn Malaysia (UTHM) in 2015 and graduated with bachelor's degree in electrical engineering with honours in 2019. After graduation, he worked in Promserv Engineering Sdn. Bhd. as an electrical field engineer for 2 years. In 2021, he enrolled at UTHM for Master of Electrical Engineering.