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ABSTRACT 

Transformer is part of the most important electrical equipment in the distribution 

power system network. However, transformer will exhibit faults under long operation 

which may often be confused with the stray gassing (SG) phenomenon. Nevertheless, 

this SG phenomenon is still being left out by many researchers and the root causes are 

yet being identified. The current SG test and interpretation methods used by the 

industries is also very inefficient and inaccurate, where the existing Duval Pentagon 

Method (DPM) interpretation method is proven with a low accuracy of only 58.7% to 

interpret stray gassing condition. Therefore, an accurate and fast interpretation tool is 

required to solve the dissolved gas analysis (DGA) interpretation and gassing pattern 

of transformer materials should be investigated to help in transformer root cause 

determination. This research work involves the use of ensemble-based machine 

learning (ML) algorithms to improve the interpretation accuracy of DPM. Three ML 

models are developed, and all the models are also showing promising results with more 

than 70.0% of interpretation accuracy to interpret three different transformer 

conditions. The random-under-sampler (RUS)boosted trees model is the best model 

with the interpretation accuracy of 81.2%. Besides, three different transformer 

materials, which are insulation paper, core metal, and gasket were experimented with 

uninhibited and inhibited transformer oil under heat to understand the gassing 

behaviour caused by the materials. The findings indicate that for uninhibited oil, the 

insulation paper effects the generation of hydrogen (H2), carbon monoxide (CO) and 

carbon dioxide (CO2) gases, the core metal effects generation of CO gases, and the 

gasket effects the generation of H2, methane (CH4), ethylene (C2H4), CO and CO2 

gases. For the inhibited oil, the insulation paper effects the generation of H2 and CO2 

gases, the core metal effects the generation of H2, CO and CO2 gases, and the gasket 

effects the generation of H2, C2H4, CO and CO2 gases. This research contributes to the 

use of data resampling method to design ML models with high interpretation accuracy 

and also contributes to the findings of gassing characteristics for gasket material. 
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ABSTRAK 

Alat pengubah elektrik adalah sebahagian daripada peralatan elektrik yang paling 

penting dalam rangkaian sistem pengagihan kuasa. Namun, alat pengubah elektrik 

akan mengalami kerosakan dalam jangka Panjang operasi dan sering dikelirukan 

dengan fenomena gas sesat (SG). Walau bagaimanapun, fenomena SG ini masih 

diabaikan oleh ramai penyelidik dan banyak lagi punca SG yang belum dikaji. Kaedah 

ujian SG yang digunakan oleh industri sekarang sangat tidak effisen dan tidak tepat, 

di mana tafsiran DPM telah dibuktikan dengan ketetapan serendah 58.7% sahaja. Oleh 

itu, satu alat tafsiran yang tepat dan pantas diperlukan untuk menyelesaikan masalah 

tafsiran DGA dan bahan alat pengubah elektrik perlu dikaji dari segi corak pengegasan 

untuk membantu dalam penentuan punca pengesasan. Kerja penyelidikan ini 

merangkumi penggunaan algoritma pembelakaran mesin berasaskan ensemble untuk 

meningkatkan ketepatan tafsiran kaedah DPM. Tiga model pembelajaran telah direka, 

dan kesemua model telah menghasilkan keputusan yang memuaskan dengan lebih 

daripada 70.0% ketepatan dalam pentafsiran keadaan alat pengubah elektrik. RUS 

boosted tree model merupakan model yang paling bagus dengan keseluruhan 

ketepatan pentafsiran sebanyak 81.2%. Tiga bahan alat pengubah eletrik yang berbeza 

(kertas penebat, logam teras dan gasket) telah dikaji dengan campuran minyak pengubah 

terhalang dan minyak pengubah tidak terhalang di bawah haba untuk memahami corak 

pengegasan yang berlaku. Pendapatan kajian menunjukkan dalam minyak pengubah 

tidak terhalang, kertas penebat menyebabkan pengegasan H2 , CO  dan CO2 , logam 

teras menyebabkan pengegasan CO dan gasket menyebabkan pengegesan H2 , CH4 , 

C2H4 , CO  dan CO2 . Dalam minyak pengubah terhalang pula, kertas penebat 

menyebabkan pengegasan H2 dan CO2, logam teras menyebabkan pengegesan H2, CO 

dan CO2  dan gasket menyebabkan pengegasan H2 , C2H4 , CO  dan CO2 . Kerja 

penyelidikan ini menyumbang kepada penggunaan keadah pensampelan semula untuk 

mereka model pembelajaran yang boleh menghasilkan ketepatan pentafsiran yang 

tinggi dan juga kepada penemuan ciri penghasilan gas untuk bahan gasket. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

A transformer is a static electrical component with no moving parts that are 

used for stepping up or down or isolating one circuit from another. The transformer 

voltage can be stepped up during long-distance transmission and stepped down for 

commercial or industrial use with very low losses [1]. Due to this functionality, the 

transformer becomes one of the most important pieces of equipment in an electrical 

system. Although there is an emergence of dry-type transformers in this generation, 

but oil-immersed transformers still hold the majority among the transformer type used 

in our country due to the long-lasting characteristic which can be maintained and 

repaired when necessary. Fuji Electric claims that the life expectancy of an oil-filled 

transformer is about 30 years [2]. However, the transformers might still begin to 

generate failure signals during the servicing period if proper maintenances are not 

provided. This situation might further lead to huge financial losses and at the same 

time cause damages and shorten the servicing lifetime of the transformers. A statistical 

assessment [3] shows that most of the failures in the transformer are related to 

insulation, where 33.9% are located at the tap changer and 32.1% are located at the 

winding.  These failures should be able to be detected earlier if proper maintenance 

action is conducted, which can extend the servicing period of the transformers. 

Unfortunately, due to the lack of proper maintenance, 35.7% of the transformers were 

scrapped due to the incapable of repairing when failures occur [3].  

One of the best diagnostic methods for oil-immersed transformers is the DGA. 

DGA is a widely used technique to estimate the condition of oil-immersed 

transformers. The measurement of the level and the changes of combustible gases in 
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insulating oil, which include methane ( CH4 ), ethane ( C2H6 ), ethylene ( C2H4 ), 

acetylene (C2H2), carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2) is 

a trustworthy diagnostic tool which can be used as an indicator of undesirable events 

occurring inside the transformer. Faults happening inside the transformers such as hot 

spots, electrical arcing, or partial discharge can be predicted based on the increment of 

the combustible gases in the transformer oil. Therefore, the identification of these 

gases being generated by a particular unit can provide useful information for a 

condition-based maintenance program [4]. 

Many interpretation methods for DGA had been researched to be used as handy 

tools for analysing the condition of the oil-insulated equipment. Some examples of the 

widely used interpretation methods are Key Gas Method, Dornenburg ratio method 

(DRM), Rogers ratio method (RRM) [5], IEC gas ratio method, Duval triangle method 

(DTM) and DPM [6]. In the early stage, the interpretation methods such as the Key 

Gas Method, DRM and RRM mainly focus on the basic transformer faults, such as 

partial discharge (PD), thermal fault, or arcing fault. This is due to less research had 

been conducted on the SG characteristic of oil-insulated equipment. The percentage 

reliability of the interpretation methods is also varied and comparably low. Besides, 

external factors such as differences in the rated voltage level of transformers will also 

affect the reliability of these interpretation methods [7]. Later, with more concerns 

being rose against the stray gassing event in the oil-insulated equipment, the DTM 

method was updated in 2008 with 2 new Triangle, named Duval Triangle 4 and 5 to 

be used for the low-temperature faults which covers the stray gassing event. The DPM 

was also introduced in 2014 by Duval, M. to deal with this gassing characteristic, six 

basic transformer faults, and stray gassing in mineral oil. This method proved to be 

accurate in predictions and consistent for various types of transformers, as shown in 

[8].  

The emergence of machine learning as the ideal tool to carry out the intelligent 

monitoring and analysis system provides the possibility for the DGA interpretation 

accuracy to be further enhanced. Through the use of various machine learning 

algorithms, the accuracy of various interpretation methods was shown to be improved, 

such as in [9] [10]. Many different ML algorithms had also been implemented, such 

as the artificial neural networks (ANN), k-nearest neighbour (KNN), support vector 

machine (SVM), decision tree, and even deep learning algorithms to improve the 

prediction accuracy of different interpretation methods [11].  
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1.2 Problem Statement 

In recent years, it was found that certain gases formed and dissolved in 

insulating oil are not due to incipient faults in the transformers. Based on the initial 

investigation and assessment conducted, no abnormalities were found in the 

transformer. In addition, the loading pattern of these transformers were relatively low 

compared to its design rating capacity and no defects in the external cooling system 

were found. One of the possible causes of the formation of these combustible gases 

was due to SG phenomenon which is a natural event [12]. According to statistics on 

the power transformer population installed at Tenaga Nasional Berhad (TNB) 

transmission and distribution substation, on average 600 transformers were found to 

have high combustible gases over the last three years [13]. Without an accurate 

diagnostic assessment, field engineers may take unnecessary maintenance action and 

later increase the operation maintenance cost. One of the examples is that the 

increment of H2 gas in the transformers is often mistakenly attributed to corona partial 

discharge [14]. Thus, a method of interpretation for stray gassing is required to identify 

this stray gassing phenomenon. 

The SG test is the most reliable method used by industries to identify the SG 

phenomenon accurately. However, this method of testing as stated in the ATSM 

D7150 standard [15] and CIGRE Technical Brochure #771 [16] required a very long 

heating time of up to 164 hours to obtain the SG result, which turn out to be very 

inefficient. Therefore, DGA interpretation methods gain the advantage to be able to 

interpret the transformers’ condition based on the DGA result in a short time. Among 

the DGA interpretation methods, the Duval Triangle Method (DTM) and DPM are the 

most used interpretation tools which cover the SG identification. However, a study by 

Kim, S. et al. [17] showed that the Duval triangle 4, Duval triangle 5, and Duval 

pentagon were only capable of identifying 67.4%, 45.7%, and 58.7% of the SG 

phenomenon accurately. The low percentage of interpretation accuracy does not allow 

the interpretation tool to be utilised as a reliable alternative for identifying the SG of 

transformer oils. Therefore, the problems above rise the concern of the need for an 

interpretation method that must be accurate and fast when making the interpretation of 

the SG phenomenon.  
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ML had been utilised as one of the effective ways to improve the DGA 

interpretation methods. However, works involving the use of ML to improve the DGA 

interpretation were mostly focused only on the transformer faults, whereby the SG 

phenomenon was excluded. This was shown in the study by Rao, U. M. et al. [18] 

where the SG condition was purposely excluded when building the ML classification 

model to prevent the SG data from interrupting and confusing the fault classification. 

Another study by Saravanan, D. et al. [10] also classified only the transformer faults 

by using the SVM and multilayer ANN and did not include the SG phenomenon. Thus, 

there is a need to have a ML model which can classify both transformer faults and SG 

conditions to be more practical when used to interpret actual transformer conditions 

based on the DGA. 

Besides identifying the condition of oil-immersed transformers, whenever 

faults or SG activities were found within the transformers, it is also important to 

identify the root cause for the generation of specific gases, which can help the site 

engineers to decide the necessity to solve the gassing phenomenon and also to reduce 

the time taken for checking and repairing the transformers. Therefore, studies had been 

done to identify various root causes for the transformer gassing phenomenon. A study 

by I. Atanasova-Hohlein [19] investigated the root cause for the gassing characteristic 

of transformer oil due to the influence of copper material. Another study by Gao, S. 

H. et al. [20] had investigated the benzotriazole metal passivator (BTA) as the root 

cause of abnormal dissolved gases generation, especially CO , CO2  and H2  in the 

transformer oil. However, as there are still many other transformer materials that were 

not being investigated, it is crucial to experiment with those transformer materials to 

understand about the gassing effect caused by those materials. 

The problems stated above contributed to the idea in this research work to 

develop an analysing tool for the transformer conditions which is fast and accurate 

using a ML algorithm. The tool developed was able to differentiate whether the 

transformer is in normal condition, build-up of stray gases, or faulty condition. 

Moreover, the tool was also able to determine the root cause of gases formation in the 

transformer and the possible formation of stray gases based on the outcome of the 

laboratory findings on three different transformer materials, which are insulation 

paper, transformer ferrite core and gasket. Thus, cost savings in the operation and 

maintenance of the transformer could be achieved, due to avoidance of unnecessary 

maintenance action taken. 
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1.3 Objectives 

The aims of the project are as follows: 

i. To analyse the transformer oil based on the Duval pentagon interpretation 

method and determine the gassing characteristic of the dissolved gases. 

ii. To develop a machine learning model with MATLAB classification learner 

app by the ensemble-based algorithm for the interpretation of transformer 

conditions from the dissolved gases. 

iii. To analyse the performance of the developed machine learning model in 

terms of percentage of accuracy to interpret actual transformer conditions. 

 

1.4 Project Scopes/ Limitations 

The scopes of the project are as follows: 

i. Dissolved gases investigated in this project included CH4 , C2H6 , C2H4 , 

C2H2, CO, CO2, and H2. 

ii. DGA method was used to identify the gases in the transformer oil. 

iii. DGA data were collected from oil samples of real transformers from local 

power utilities. 

iv. Transformers were rated 33kV and below, 3-phase, and oil samples were 

collected from the main tank of transformers. 

v. The gas data were analysed by using DPM. 

vi. Transformer materials that were investigated include transformer ferrite 

core, winding paper insulation, and main tank gasket seal. 

vii. Transformer oil used were Hyrax Hypertrans HR Inhibited Transformer 

Oil, and Hyrax Hypertrans Uninhibited Transformer Oil. 

viii. Temperature for the stray gassing experiment was set at 60˚C, 80˚C, and 

100˚C. 

ix. Ensemble-based algorithms, which are boosted trees, RUS boosted trees, 

and subspace KNN were used to develop the machine learning models to 

perform analysis of transformer’s conditions based on DGA.
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