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ABSTRACT  

Nowadays, the progress in autonomous robots is being driven by the advancements in 

new technologies, particularly Deep Reinforcement Learning (DRL). DRL facilitates 

the autonomous navigation of robots by enabling them to interact with their 

environment and navigate automatically. Achieving accurate navigation is crucial, and 

the utilization of Soft Actor-Critic Deep Reinforcement Learning (SAC DRL) offers 

the most effective solution based on the principles of Reinforcement Learning (RL). 

However, certain weaknesses in SAC DRL have been identified, particularly in the 

exploration process for accurate learning with faster maturity. To address this issue, 

this research has designed and developed a solution based on an appropriate reward 

function to guide the learning process. Several types of reward functions based on 

sparse and shaping rewards in the SAC method have been proposed in this research. 

These include the reward function with angle correction (RFAC), the reward function 

without angle correction (RFWAC), the reward function without sparse reward 

(RFWSR), and the reward function without sparse reward and angle correction 

(RFWSRAC). These reward functions aim to investigate the effectiveness of mobile 

robot navigation learning. Through a series of experiments, the results demonstrate 

that the fusion of sparse and shaping rewards in the SAC DRL facilitates successful 

navigation of the robot to the target position, while also enhancing accuracy and 

maturity. Specifically, the incorporation of sparse rewards in the reward function leads 

to a significant improvement. The system with the sparse reward achieves the lowest 

average error of 4.989%, outperforming the system without sparse rewards, which 

exhibits the highest average error of 99.252%. 
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ABSTRAK  

Pada masa kini, perkembangan robot autonomus didorong oleh kemajuan dalam 

teknologi terbaru, terutama Deep Reinforcement Learning (DRL). DRL memfasilitasi 

navigasi autonomus robot dengan memungkinkannya berinteraksi dengan lingkungan 

dan navigasi secara otomatis. Mencapai navigasi yang akurat sangat penting, dan 

penggunaan Soft Actor-Critic Deep Reinforcement Learning (SAC DRL) 

menawarkan solusi paling efektif berdasarkan prinsip-prinsip Reinforcement Learning 

(RL). Namun, kelemahan tertentu dalam SAC DRL telah diidentifikasi, terutama 

dalam proses eksplorasi untuk pembelajaran yang akurat dengan kematangan yang 

lebih cepat. Untuk mengatasi isu ini, kajian ini telah merancang dan mengembangkan 

penyelesaian berdasarkan fungsi ganjaran yang sesuai untuk memandu proses 

pembelajaran. Beberapa jenis fungsi ganjaran berdasarkan ganjaran yang jarang dan 

penyesuaian dalam kaedah SAC telah dicadangkan dalam kajian ini. Ini termasuk 

fungsi ganjaran dengan pembetulan sudut (RFAC), fungsi ganjaran tanpa pembetulan 

sudut (RFWAC), fungsi ganjaran tanpa ganjaran yang jarang (RFWSR), dan fungsi 

ganjaran tanpa ganjaran yang jarang dan pembetulan sudut (RFWSRAC). Fungsi 

ganjaran ini bertujuan untuk mengkaji keberkesanan pembelajaran navigasi robot 

mudah alih. Melalui beberapa siri eksperimen, keputusan menunjukkan bahawa 

penggabungan ganjaran jarang dan pembentukan dalam SAC DRL memudahkan 

navigasi robot ke kedudukan sasaran dengan berjaya, sambil meningkatkan ketepatan 

dan kematangan. Secara khusus, penyerapan ganjaran jarang dalam fungsi ganjaran 

menghasilkan peningkatan yang signifikan. Sistem dengan ganjaran jarang mencapai 

kesalahan purata terendah sebanyak 4.989%, mengungguli sistem tanpa ganjaran 

jarang yang mempunyai kesalahan purata tertinggi sebanyak 99.252%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the research  

Nowadays, with the rapid evolution of the modern era, mobile robots have emerged as 

portable and robust technologies that are highly versatile and suitable for a wide range 

of situations. They excel in applications such as rescue and logistics operations, where 

they offer superior alternative solutions to tackle challenging conditions. As 

technology advances, continuous efforts are made to enhance mobile robots and 

provide greater convenience to humans. Artificial intelligence (AI) based 

technologies, especially those utilizing fuzzy concepts [1], [2], have emerged as a 

prominent trend in robot control. Many researchers have conducted numerous studies 

involving AI, specifically Reinforcement Learning (RL) [3], [4], and have introduced 

various technologies for the navigation process in mobile robot applications. These 

studies reflect the ongoing trend of implementing new technologies to enhance the 

capabilities of mobile robots using AI, particularly the use of Machine Learning (ML) 

[5]–[7]. 

ML is an effective branch of AI that is widely used to train robots without the 

need for constant human supervision [8]. RL enables robots to learn the next action 

based on their interactions with the environment, empowering them to operate and 

control autonomously. In recent times, various ML algorithms have emerged, 

including Q-Learning [9], [10], State-Action-Reward-State-Action (SARSA) [11], 

Deep Q-Network (DQN) [12], Deep Deterministic Policy Gradient (DDPG) [13], and 

Soft Actor-Critic (SAC) [14]. These algorithms are expected to continue making 

significant contributions in the future. The aim of this research is to implement a hybrid 

method called Deep Reinforcement Learning (DRL), which combines RL techniques 
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with neural networks. The application of this approach will enhance the intelligence 

and utility of mobile robots, including their potential for integration into autonomous 

vehicle systems in the future. 

Completing seemingly simple tasks for a robot, like navigation and movement 

control, actually involves complex behaviors. To achieve this, a massive amount of 

data is needed, with high-dimensional state observations for each data point. The 

reason for collecting such a large amount of data is due to the use of On-Policy DRL. 

However, this approach is inefficient because it only utilizes each sample once for 

learning. To tackle the challenge of dealing with high-dimensional states, researchers 

have turned to Off-Policy DRL. This method involves reusing previously collected 

learning samples [15], which greatly reduces the reliance on millions of samples to 

master a seemingly simple task. However, Off-Policy DRL has its own issues, such as 

problems with non-linear neural network stability and convergence [16]. In this 

context, the robot's agent must learn in an unknown environment without a specific 

sample memory. It needs to maximize exploration during the learning process. To 

address these challenges related to exploration, the SAC algorithm is employed. The 

SAC algorithm aims to maximize entropy in the off-policy method, effectively 

addressing stability and convergence problems [14]. Furthermore, the SAC algorithm 

represents the state-of-the-art approach for continuous action, significantly improving 

the robot's movement performance, especially in terms of navigation accuracy. 

In the field of RL research, the effectiveness and optimization of the system 

are crucial for ensuring its efficiency. Consequently, various factors, including the 

developed policy, can have an impact on SAC. Among these factors, the reward 

function plays a critical role in addressing complex task issues like navigation [17], 

[18]. The reward function is a vital component in determining the performance of the 

learning process based on the RL concept. By implementing an appropriate reward 

system, training performance can be enhanced, and the learning process can be 

expedited during environmental adaptation. 

Among the various previous suggestions for improving systems that involve 

reward functions [17]–[19], the SAC algorithm stands out as a fundamental algorithm 

based on reward functions. In this research, the SAC algorithm will be utilized as the 

primary engine to control and determine the movement of robots, specifically focusing 

on mobile robots. The experiment will center around testing and enhancing 

performance using the reward function system. Simulation will be employed on a 
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platform to illustrate the hypothesis. Furthermore, this research aims to specifically 

address the highlighted issue by pursuing the following objectives:  

1.Develop Sparse and Shaping reward functions in the SAC system for mobile 

robot navigation, serving as the main fundamental controller.  

2. Evaluate the performance of the developed system through training and 

simulation processes.  

The reward function has emerged as a vital element within the SAC system. 

Assessing the effectiveness of robots in process navigation poses a significant 

challenge, mainly due to the utilization of the reward function during robot training. 

The contribution of this research can help improve autonomous navigation (AV) 

technology based on AI, specifically by enhancing performance in terms of accuracy 

and increasing the maturity of short-term learning. 

1.2 Problem statement  

Autonomous mobile robots are widely used in various industries [20], [21]. A previous 

research [22] has found that one of the factors that affects the accuracy of autonomous 

robot movement is the complex representation of the observation space when 

processing environmental information as input data. Therefore, in this research, the 

focus is on improving navigation accuracy as a priority when developing methods to 

support the system. As a result, continuous action has been identified as the optimal 

solution to address the issue of movement accuracy. In recent years, a subfield called 

SAC has emerged within the latest DRL techniques. SAC combines RL and neural 

networks to facilitate the development of autonomous processes [14]. SAC is 

particularly known for its robustness and suitability for handling high-dimensional 

data observations. Additionally, it offers practical benefits as the system can utilize a 

replay buffer to enhance the learning process [14], [23]. 

Based on various previous studies [6] and [24], the SAC algorithm has emerged 

as the cutting-edge method for controlling autonomous robots, especially in tasks 

involving continuous action for navigation. However, the effectiveness of this system 

relies on the use of a suitable reward function that facilitates the learning process and 

motivates the robot to achieve its goals. To address this concern, this research aims to 

improve the learning performance of the SAC algorithm by enhancing the reward 
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function system, with a specific focus on improving navigation accuracy. On the other 

hand, previous research [17]–[19] has emphasized the pivotal role of the reward 

function in enhancing the overall system performance and advancing the learning 

capabilities of robots. Therefore, the research can enhance learning accuracy within a 

short period by employing an appropriate reward function system within the SAC 

algorithm. 

1.3    Research aims  

The aims of this research can be summarized as follows: 

a) To develop a controller based on the SAC algorithm in order to operate 

autonomous mobile robot navigation using appropriate reward functions. This 

will be achieved by implementing a fusion of sparse and shaping reward 

functions.  

b) To assist the learning efficiency and accuracy of the robot through system 

development. 

1.4    Objectives  

The objectives identified for implementation in this research are as follows: 

a) To design and develop a Sparse and Shaping reward function in SAC DRL for 

mobile robot navigation. 

b) To evaluate the performance of the developed method in terms of learning 

accuracy.  

1.5 Scopes and limitations  

In order to fulfil the stated objectives, the scope of this research will be divided into 

three stages: 

i) Algorithm identification stage 

- Analysis of the Sparse and Shaping reward functions in SAC DRL for 

implementation in the control system. 
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           ii) Training stage 

- Train the agent using 1000 episodes for each reward function. 

- Implement the SAC algorithm for a two-wheel differential drive in 

MATLAB and Simulink for 2D simulation.  

iii) Simulation stage 

- Evaluate the trained agent after the training process using MATLAB 

and Simulink. 

 

To develop a fusion sparse and shaping reward function in SAC DRL for 

mobile robot navigation in this research, the following limitations have been identified: 

a) Environmental factors, particularly weather conditions such as wind, 

rain, and unpredictable environments, are not considered since this 

research is based on a simulation platform. 

b) In the development phase, the dynamic stability issues are not 

prioritized to ensure the stability of robot movement in achieving the 

objective. 

c) The initial and target positions do not incorporate randomness because 

this research focuses on the development and performance of reward 

functions. 

d) This research only utilizes the same map for the experiment since the 

main focus is on the reward function system. 

 

This research includes a collaboration with The MathWorks Inc., focusing on 

the development of a SAC mobile robot navigation system using application 

simulation. MATLAB and Simulink are the primary software applications utilized for 

the simulation throughout the entire development process. 
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1.6 Outline of the thesis   

This thesis proposes the utilization of fusion sparse and shaping reward functions in 

SAC DRL for mobile robot navigation. The primary objective of this research is to 

develop a simulation system that enables a novel approach to directly control mobile 

robot navigation without the need for supervision. This will be accomplished through 

the implementation of the SAC method with an appropriate reward function system. 

Chapter 1 introduces the thesis and sets the context for the research. It provides 

an overview of the problem statement and the motivation behind the research. The 

chapter outlines the research objectives, highlighting the significance of developing a 

new approach for mobile robot navigation using fusion sparse and shaping reward 

functions in SAC DRL. 

Chapter 2 undertakes an extensive review of the related works that have 

employed RL in the control of mobile robots. This comprehensive examination 

encompasses various topics such as AI, RL, DRL, SAC, mobile robots, and reward 

functions. By critically analyzing the existing literature, this chapter aims to provide a 

solid foundation and a comprehensive understanding of the research landscape. 

Chapter 3 presents the methodology employed in this research, offering a 

detailed description of the procedural steps involved in the development of the 

advanced simulation system. The chapter elaborates on the design considerations, data 

collection methods, and the implementation process of the fusion sparse and shaping 

reward function system within the SAC DRL framework. It ensures a thorough 

understanding of the methodology followed, enabling reproducibility and credibility 

of the research. 

Chapter 4 delves into the simulation results and conducts a comprehensive 

analysis of the research outcomes. The obtained results are meticulously evaluated, 

providing insights into the performance and effectiveness of the proposed approach 

for mobile robot navigation. The chapter presents statistical analyses, and visual 

representations to validate the system's performance and highlight its strengths and 

limitations. 

Finally, Chapter 5 concludes by summarizing the achievements of the research 

and putting forth recommendations for future research endeavors. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Theory       

This research will utilize the relevant fundamentals that will be discussed in this topic. 

Controlling the robot to achieve the objectives through the implementation of SAC 

DRL is a subset of AI, serving as the primary control mechanism for this system. This 

approach aims to enhance the robot's intelligence and robustness in unpredictable 

environments. Table 2.1 illustrates the overall framework of DRL based on the 

underlying theories. 

 

 

Figure 2.1: Block diagram for overall DRL. 
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2.1.1 Artificial Intelligence (AI)   

AI is a field of science and technology that aims to replicate or simulate human 

intelligence in machines. Over the course of several decades, significant advancements 

have been made in AI, making it a key factor in measuring technological 

breakthroughs, especially in the robotics sector. In recent years, driven by the 

exponential growth of data and the availability of powerful computer hardware, AI has 

entered a new evolutionary stage with the development of related technologies, many 

of which are being implemented in robotics. One such technology is ML, which holds 

great potential for benefiting humanity. This research specifically focuses on the 

implementation of a hybrid algorithm that combines RL and deep learning (DL) to 

develop a system that enables autonomous control of robots without the need for 

manual intervention.  

2.1.2 Machine Learning (ML)  

ML is undoubtedly one of the most influential and powerful technologies in the 

modern era. This research begins with an introduction to the concepts of Machine 

Learning, which will be applied in mobile robots to enhance their intelligence and 

usefulness in the future. The objective is to cover fundamental ideas along with 

theoretical concepts, providing a comprehensive understanding. 

ML can be categorized into three types: supervised, unsupervised, and RL [8], 

[25]. Each type of ML follows its own methodology and approach, but they all adhere 

to the same underlying principles and theories. This session will delve into the concept 

of ML, providing a thorough discussion and explanation. Table 2.1 summarizes the 

different types of ML. 
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Table 2.1: Summarise the different types of ML [8], [25], [26]. 

 Type of ML Description 
Algorithm of 

method 

Application of 

algorithm 

1 
Supervised 

Learning 

The method is applied to sample data. 

The target is to learn by the mapping 

concept (setting the rules) between a 

set of inputs and outputs. 

Classification, 

Regression 

image 

classification, 

object 

detection 

2 
Unsupervised 

Learning 

In the training process for this method, 

only input data is provided without the 

guided sample. There is no labelled 

input to accomplish the goal. The 

model learns by observing and 

analysing. Furthermore, this method is 

more challenging to learn than 

Supervised Learning. The algorithm 

focuses less on the idea of determining 

the pattern and more on the 

unpredictable system. 

clustering, 

association 

analysis 

marketing 

automation 

3 RL 

The algorithm determines the target 

based on observations from 

interactions with the environment to 

take action that maximises reward or 

minimises risk. RL algorithms (as 

agents) constantly learn from their 

surroundings through error and update 

their experience until they reach their 

target. 

Classification, 

Control 

robotics, 

computer 

played games, 

autonomous 

car, data 

processing, 

aircraft control 

 

2.1.3 Reinforcement Learning (RL)  

RL is a popular ML technique in which an agent interacts with its environment through 

trial and error [26]. Essentially, RL can be compared to a baby learning to walk, 

improving through the learning curve and mistakes, thereby enhancing the learning 

process. Therefore, it is important to consider RL as a ML algorithm, alongside 

supervised and unsupervised learning, providing additional useful options depending 

on the system's development purpose. 

In ML, RL is classified as a semi-supervised learning model. It enables an 

agent to act and interact with an environment to maximize total rewards. RL is 

typically modelled based on a Markov Decision Process (MDP) [26]. Figure 2.2 
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illustrates the basics of an RL system, where adjustment actions are made through the 

learning process to achieve the desired goal. Table 2.2 provides a description of the 

process and functions utilized in the RL system. 

 

 

Figure 2.2: Based on modelled of RL in a Markov Decision Process [26]. 

 

Table 2.2: Describe of some important terms used in RL based on MDP. 

 Process Function 

1 Agent perform actions in an environment to gain reward 

2 Environment situation or scenario that an agent will be facing 

3 Reward 

an immediate return will give to an agent when performs for specific 

action or task 

4 State  

the current scenario or situation after returned response by the 

environment 

5 Action process or action will be taken based on environment and current stage 

         

Most importantly, RL has several advantages: it can identify situations that 

require automated actions, discover optimal rewards, facilitate the agent's learning 

process to achieve those rewards, and enable the system to determine the most 

effective solutions or methods for obtaining rewards. 

However, one of the disadvantages of RL is that it often requires a significant 

amount of time to solve complex tasks [27]. To address this issue, researchers have 

been increasingly exploring advanced technologies that combine two elements of AI, 

aiming to create more powerful and intelligent systems. This research focuses on the 

combination of Deep Neural Network (DNN) and RL, as it has shown promise in 

previous successful studies conducted by other researchers [6], [28], [29], [30], [31].  
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2.1.4 Deep Learning (DL)  

DL is a subset of ML that aims to teach machines how to make decisions based on 

inputs and outputs, similar to the human brain. It utilizes neural networks with multiple 

layers of input to achieve the desired outcome. There are various types and structures 

of DL [32], including Boltzmann Machine, Deep Belief Network, Feedforward Deep 

Network, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), 

Long-Short Term Memory (LSTM) network, and Generative Adversarial Network 

(GAN). The most popular structures used by researchers in DL are RNN and CNN. 

Figure 2.3 shows a block diagram of a neural network. 

 

 

Figure 2.3: Block diagram of neural network. 

 

DL is based on the concept of artificial neural networks, which employ 

algorithms to process large amounts of data and improve system efficiency. The 

advantage lies in the ability to effectively and efficiently process larger datasets. Figure 

2.4 provides an illustration of the basic concept of DL. 

 

 

Figure 2.4: The basic concept in DL. 
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