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 ABSTRACT 

Predicting the energy consumption in a building is an effective technique for reducing 

energy demand and improving energy efficiency. Hence, a predictive tool is required 

to predict the energy consumption. In this study, proposed methodology adapted the 

adaptive neuro-fuzzy inference system (ANFIS) method to learn the patterns of 

electricity usage behaviour with the corresponding load profile. The proposed ANFIS 

was applied to the energy consumption pattern of university students at a residential 

college. The result showed that the developed method predicted the synthetic load 

profile accurately even when tested with unpredicted input datasets of electricity usage 

behaviour. This study showed that the MAPE and RMSE of the proposed ANFIS were 

3.96% and 0.9204, respectively. In addition, the proposed ANFIS outperformed the 

state-of-the-art synthetic load profile prediction techniques of support-vector machine 

(SVM), multiple linear regression (MLR), Gaussian process regression (GPR), and 

fuzzy inference system (FIS). Finally, the effectiveness of various demand-side 

management (DSM) strategies was implemented at the residential college to validate 

the performance of the proposed ANFIS. In this study, the load-clipping strategy was 

better than other DSM techniques, as it saved more energy of up to 57%.  
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ABSTRAK 

Meramalkan penggunaan tenaga dalam bangunan ialah teknik yang berkesan untuk 

mengurangkan permintaan tenaga dan meningkatkan kecekapan tenaga. Oleh itu, alat 

ramalan diperlukan untuk meramalkan penggunaan tenaga. Dalam kajian ini, 

pendekatan baru dalam meramalkan profil beban sintetik berdasarkan tingkah laku 

penggunaan elektrik. Metodologi yang dicadangkan mengadaptasi kaedah adaptive 

neuro-fuzzy inference system (ANFIS) untuk mempelajari corak tingkah laku 

penggunaan elektrik dengan profil beban yang sesuai. ANFIS yang dicadangkan 

digunakan untuk mempelajari corak penggunaan tenaga elektrik oleh pelajar universiti 

di kolej kediaman. Hasilnya menunjukkan bahawa kaedah yang dibentangkan dapat 

meramalkan profil beban sintetik, dengan tepat walaupun diuji dengan set data input 

yang tidak dapat diramalkan mengenai tingkah laku penggunaan elektrik. Kajian ini 

menunjukkan bahawa MAPE dan RMSE dari ANFIS yang dicadangkan masing-

masing adalah 3.96% dan 0.9204. Selain itu, ANFIS yang dicadangkan mengatasi 

teknik ramalan profil beban sintetik yang lain seperti support-vector machine (SVM), 

multiple linear regression (MLR), Gaussian process regression (GPR), dan fuzzy 

inference system (FIS). Akhirnya, keberkesanan pelbagai strategi pengurusan 

permintaan (DSM) dilaksanakan di kolej kediaman untuk mengesahkan prestasi 

ANFIS yang dicadangkan. Dalam kajian ini, pemotongan beban lebih baik daripada 

teknik DSM lain kerana dapat menjimatkan lebih banyak tenaga sehingga 3.852 MW.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

In realising Industrial Revolution 4.0 (IR4.0), the digital twin concept is one of the 

most promising and crucial technology enablers which connects the physical and 

virtual realms by focusing on the rapid development of simulation, data acquisition, 

data communication, and other advanced technologies seamlessly [1]. An example of 

the implementation of the concept in power system operation is shown in Figure 1.1 

The figure illustrates that the real-time measurement of the actual power system is 

continuously fed to its digital twin in virtual space [2]. Any required operational 

modifications can be applied first in the digital twin of the physical grid to predict 

operational insight before changes are implemented in the real system. 

 Consequently, implementing the digital twin concept is beneficial in power 

system applications that directly depends on stochastic human behaviour, such as in 

the demand-side management (DSM) application. DSM is utilised in the power system 

to modify the load profile by influencing the end-user electrical utilisation behaviour 

[3]. In the literature, several strategies are reported to realise this technique. However, 

the effectiveness of each strategy depends on a myriad of factors (e.g., ambient 

temperature, daily activities, or cost), and implementing each technique may require a 

considerable capital investment and person-hour [4]. Hence, the implementation of the 

digital twin concept in the demand-side management application is required to 

evaluate the performance of DSM on the actual real-time system. A predictive tool to 

predict the resulting synthetic load profile following the implementation of the DSM 

strategy is required to ensure its effectiveness on the targeted user before implementing 

it in practice. 
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Figure 1.1: Electrical digital twin. 

In the literature, there are several works reported to address the need for the 

predictive tool. The methods are data-driven and can be classified into two categories: 

mathematical-model-based and machine-learning-based methods. The researchers in 

[5] and [6] reported mathematical modelling to predict the synthetic load profile. The 

utilisation pattern of the load with the corresponding load profile using a bottom-up 

mathematical modelling approach was presented. In [7]–[10], the researchers proposed 

machine-learning-based methods to predict the load profile based on energy 

signatures. Examples of machine learning used by the researchers are ANFIS, MLR, 

SVM, and GPR. In addition, the employed machine-learning-based methods 

considered the energy pattern, such as energy consumption pattern, energy 

consumption’s rate of change, temperature, and humidity, to predict the synthetic load 

profile.  

In this study, the ANFIS method was utilised to capture the dynamics of 

electricity usage behaviour to predict the synthetic load profile. Similarly, the 

application of ANFIS has been widely reported in the literature to address various data 

prediction challenges in power system studies [10]. The study used a data-driven 

machine-learning method which is it does not require an extensive mathematical 

modelling process. Thus, this study utilised the energy consumption pattern of students 

residing at the Tun Dr. Ismail Residential College (TDIRC) at Universiti Tun Hussein 

Onn Malaysia (UTHM) to develop the training dataset for the ANFIS. The method 

modelled the electricity usage behaviour of the students and associated it with the 
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corresponding load profile in the training dataset development. The types of users 

considered in this study possessed a unique challenge in the DSM strategy. The 

students are not directly responsible for the electricity bill because it is included in the 

accommodation fees. In addition, the students are the most dominant electricity 

consumer in a university. Thus, the university management may need to apply DSM 

applications to reduce and manage the energy consumption of the students.  

1.2 Problem statement 

Predicting the energy consumption in a building is an effective technique for reducing 

energy demand and improving energy efficiency. For example, university campuses 

represent specific groups of various buildings with substantial energy consumption. A 

residential college represents the most energy usage among university buildings. 

Moreover, the number of students reflects the energy consumption of the residential 

college. Hence, it is necessary to gather information on electricity usage behaviour to 

predict the synthetic load profile. Most reported studies measured the energy of 

electrical appliances to characterise and recognise the appliances’ behaviour to predict 

the energy load profile [11], [12]. However, installing smart sockets involves an 

enormous cost to monitor the behaviour of each appliance.  

Moreover, it is a challenging task to predict energy consumption accurately. A 

machine-learning method is well adapted to the electrical load’s nature, as it can model 

complicated nonlinear connections through a learning process containing historical 

data patterns. Various ML methods have been used widely to predict energy 

consumption [13]–[15]. However, it remains questionable how to incorporate the 

relationship between the reference buildings’ identification and predict energy 

consumption using substantially fewer building data to reduce the complexity of 

prediction models. 

Additionally, an essential method is needed to manage energy demand, as it 

always fluctuates dramatically during short time frames. DSM is a powerful tool that 

adjusts the supply by increasing or decreasing the generation or adding/curtailing 

additional resources to meet the demand. DSM techniques to reduce the load profile’s 

peak and the need for facility investment have been reported in the literature. 

Nevertheless, most of the reported techniques are based on price manipulation to 
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control the users in utilising their load [16]–[18]. Therefore, these techniques are not 

suitable for students who are paying electricity bills directly. The electricity bill is 

included in the residential college fees, where the residents are able to use electricity 

without any limit. Hence, it is necessary to come out with a DSM technique that is able 

to manage the energy demand of this type of electrical user.  

1.3 Hypothesis 

The modelling of electricity usage behaviour depends on the number of users, the 

users’ schedule and activities, and the type of load. Usage behaviour varies according 

to the time of day. If the electricity usage behaviour aligns with the actual load profile, 

then the ANFIS can predict the synthetic load profile accurately. 

1.4 Aim 

This study aimed to propose a novel approach for predicting a synthetic load profile 

based on electricity usage behaviour by using the ANFIS method for DSM 

applications.  

1.5 Objectives 

This research work embarked on the following objectives: 

 

a) To study the relationship between electricity usage behaviour and electrical 

appliance usage of university students in UTHM, 

 

b) To develop a novel synthetic load profile predictor based on electricity usage 

behaviour, 

 

c) To evaluate the performance of DSM strategies using the synthetic load profile 

predictor. 
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1.6 Scope of study 

The scope of the research is as follows: 

 

a) The study was conducted at the Tun Dr. Ismail Residential College (TDIRC) 

at Universiti Tun Hussein Onn Malaysia (UTHM).  

 

b) Analysis and simulation works were conducted using MATLAB software.  

 

c) The data collection represented the load consumption in each hour for an entire 

day. It was repeated for 12 months in year 2018.  

 

d) The synthetic load profile was modelled by using the ANFIS method. 

 

e) The performance of the proposed method was compared with those of other 

methods, such as SVM, MLR, GPR, and FIS.  

 

f) The study considered only three DSM techniques, which were load clipping, 

load shifting, and load conservation. 

1.7 Research contribution 

This dissertation showed the synthetic load profile prediction performance based on 

electricity usage behaviour using the ANFIS method. This thesis introduced a method 

to predict the synthetic load profile based on the electricity usage behaviour of students 

at a residential college. A prediction method to predict the synthetic load profile is the 

foundation of this thesis. In this study, the electricity usage behaviour of the students 

at a residential college and the associated load profile were captured to develop the 

prediction tool conducted in the ANFIS. 

The proposed ANFIS outperformed the state-of-the-art modelling synthetic 

load profile prediction techniques, such as SVM, MLR, GPR, and FIS. The result 

demonstrated that the proposed ANFIS can accurately predict the synthetic load profile 

based on electricity usage behaviour compared to other AI techniques. Also, the 
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effectiveness of the proposed method was evaluated by applying the DSM techniques 

to the synthetic load profile. In this study, the application of DSM techniques may be 

advantages to the university management as it can save the energy up to 25.6%. 

Moreover, the proposed ANFIS and DSM method not just applicable for this case 

study building but it is also can be applied to other building that does not charge the 

electricity bills to the users such (e.g., residential of factory workers) 

1.8 Outline of thesis 

This thesis is organised into five chapters. Following this introductory chapter, the 

remaining chapters are described briefly as follows: 

Chapter 2 presents the related background of AI approaches for load 

consumption prediction. The current status, prospect, possible challenges, and 

solutions are briefly discussed in this chapter. Moreover, in this chapter, demand-side 

management in power system applications was also discussed. The various purposes 

of this approach are concisely discussed in this chapter. 

Chapter 3 presents in-depth the proposed research methodology used in this 

work to reach the objectives. The processing of the actual data, the mapping of 

electricity usage behaviour, the development of the adaptive neuro-fuzzy inference 

system (ANFIS), and the comparison of different AI techniques are elaborated 

thoroughly in this chapter. The flow of the project methodology is presented in a 

diagram for readers’ convenience. 

Chapter 4 presents the application, results, and discussion of the proposed 

methodology. Moreover, the performances of the proposed method were compared 

with various machine-learning algorithms to demonstrate the superiority of the 

technique. Then, the application of the proposed method is demonstrated to evaluate 

the effectiveness of various DSM strategies before implementing them in practice. 

Chapter 5 presents the summary of the main contributions and limitations of 

this study and provides some insights from this research for future studies.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter highlights the boundary of the work with the state-of-the-art techniques 

presented in this thesis. In this chapter, the works reported in the literature on load 

profile modelling of electricity usage are reviewed. Besides that, the utilisation of AI 

methods to predict load consumption is discussed in this chapter. Then, the research 

gap that sets the motivation of this research was identified. Finally, the DSM strategies 

are presented to evaluate the effectiveness of the methods’ performances in managing 

a building’s energy consumption.  

In this chapter, the methods of load profile modelling based on different 

electricity usage behaviours are reviewed in Section 2.2. Next, the AI approaches to 

predict the load profile based on electricity usage behaviour are discussed in Section 

2.3. There are five methods discussed in this section: ANFIS, SVM, MLR, GPR, and 

FIS. The literature review of these different techniques to predict load profile is 

explained in Subsection 2.3.1 until 2.3.8. Lastly, in Section 2.4, DSM applications in 

practice were reviewed.  

2.2 Load profile modelling 

Synthesising the load profile is critical in exploring future demand response and load 

curtailment prospects for smart grid implementation. Synthesising the load profile will 

vary according to the customer type (residential, commercial, and industrial), 

temperature, and holiday season. There are various methods reported to reduce the 

need for data acquisition and improve accuracy in representing usage behaviour in the 

load profile. In recent years, various researchers widely used bottom-up and top-down 

approaches to model the electricity load profile as shown in Figure 2.1. Most 
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researchers utilised in their works the load profile modelling of residential houses or 

buildings. The comparison of previous works is shown in subsection 2.2.4.  

 

 

 

 

 

 

 

 

Figure 2.1: Electricity load profile approaches 

 

 

2.2.1 Approaches in load profile modelling 

A classification system identifies vital characteristics, such as technique, sampling 

rate, application, and statistical data [19], to create a residential load profile model in 

the method. Currently, there are two types of residential load profile models: bottom-

up and top-down models. For instance, a model is assigned to the bottom-up model 

subgroup if the electricity consumption of various devices in a household is utilised to 

compute the household’s electricity consumption. In contrast, the model is assigned to 

the top-down subgroup when macro-economic parameters are used to calculate the 

household’s electricity consumption. 

The sampling rate describes the model’s ability to provide the most refined 

grain output. The output is chosen rather than input because models might have 

numerous inputs with multiple sampling rates, and outputs usually have a single 

sampling rate [20]. Hence, an hourly sampling rate is used for a model that takes 

quarter-hourly occupancy profiles as input to compute a household’s hourly electricity 

usage. However, the sampling rate is categorised as quarter-hourly if quarter-hourly 

occupancy profiles are used to assess a household’s quarter-hourly electricity usage. 

Furthermore, a model’s primary intended application is described by the 

application. In general, the DSM subcategory will be ascribed to the model used in 

DSM. Hence, the planning and control design model of energy systems and 

distribution grid is assigned to the subcategory of planning and control design of 

Electricity load profile approaches 

Top-down model Bottom-up model 
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energy systems and distribution grids. A residential load profile subcategory is 

assigned when the model aims to estimate the power consumption of a single house or 

a group of houses. 

Finally, the statistical technique defines the main statistical approach utilised 

to predict the residential load profile. If the Markov chain technique is the central 

statistical technique employed in a model, the model is placed in the Markov chain 

subgroup. If a Monte Carlo technique is applied, and the model is assigned to the 

Monte Carlo subgroup [21].  

 

2.2.2 Bottom-up model 

Bottom-up residential load profile models calculate the individual dwelling energy or 

electricity consumption and extrapolate the results over a target area or region [20]. 

This model is developed by identifying the electricity consumption of each appliance 

in a household, the behaviour pattern of the household occupants, and electrical 

appliance usage, and then combining the information to produce the total household 

load profile. In addition, the house’s characteristics, weather conditions, and 

heating/cooling might be included to determine the intensity of electrical appliance 

usage. This model can generate comprehensive details of single-household electricity 

load profiles, which can be adjusted to include or exclude appliances, include different 

device usage patterns, and include forthcoming technologies. An individual 

household’s influence on the load profile of a residential block is suitable for 

simulation investigation of the effect of different technologies, policy decisions, or 

energy optimisation methods. Furthermore, the information also can be used for load 

prediction at the utility level.  

In addition, most of the reported studies utilised the American Time Use 

Survey to gather information on usage behaviour to model the load profile [22], [23]. 

The ATUS is administered using computer-assisted telephone interviews rather than 

paper diaries, as in many other countries [24]. Moreover, the ATUS measures the 

amount of time people spend doing various activities, such as paid work, childcare, 

volunteering, and socialising. The researchers in [25] also reported a similar method 

for gathering this information. A comprehensive student activity survey form 

developed based on typical activities was discussed in [26].  
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