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ABSTRACT 

Failures in 3D printers are common in the manufacturing industry, leading to wastage 

of materials and time. This thesis addresses the challenge of automatically detecting 

under-extrusion failures in Fused Deposition Material (FDM) 3D printers using 

training techniques. Existing studies primarily focus on stringing failure detection, 

disregarding the impact of extrusion rate on printer failures. Under-extrusion failures 

can result from insufficient extrusion speed, low melting temperature, nozzle 

blockage, or worn-out extruder gear, rendering printed models unusable. To overcome 

this issue, a training method based on the YOLOv5 models are proposed. A dataset 

comprising 2400 images is created by modifying and augmenting 200 under-extrusion 

samples. Raspberry Pi and a camera are employed to gather data on under-extrusion 

samples in real-time. The YOLOv5x model is trained on Google Colab, offering 

enhanced precision, recall, and mean average precision (mAP) compared to previous 

models. The experimental results demonstrate the effectiveness of the YOLOv5 

training models in detecting under-extrusion failures. The YOLOv5x model achieves 

99% precision, 100% recall, and 99% mAP, outperforming other models. This 

research contributes to the intelligence of 3D printers by reducing waste materials and 

time lost due to failed prints. Furthermore, the proposed training approach can be 

extended to identify other types of 3D printing failures.
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ABSTRAK 

Kegagalan pada pencetak 3D adalah perkara biasa dalam industri pembuatan, 

menyebabkan pembaziran bahan dan masa. Tesis ini mengatasi cabaran mengesan 

automatik kegagalan bawah ekstrusi pada pencetak 3D menggunakan teknik latihan. 

Kajian sedia ada tertumpu pada pengesanan kegagalan meregang, mengabaikan impak 

kadar ekstrusi terhadap kegagalan pencetak. Kegagalan bawah ekstrusi berlaku 

disebabkan kelajuan ekstrusi tidak mencukupi, suhu lebur rendah, penyumbatan nozel, 

atau gear ekstruder haus, menyebabkan model yang dicetak tidak dapat digunakan. 

Untuk mengatasi isu ini, kaedah latihan berdasarkan model YOLOv5 dicadangkan. Set 

data yang terdiri daripada 2400 imej dibangunkan dengan memodifikasi dan 

meningkatkan 200 sampel bawah ekstrusi. Raspberry Pi dan kamera digunakan untuk 

mengumpulkan data pada sampel bawah ekstrusi secara masa nyata. Model YOLOv5x 

dilatih di Google Colab, menawarkan ketepatan, kenangkabalan, dan min purata yang 

lebih baik berbanding model-model sebelum ini. Keputusan eksperimen menunjukkan 

keberkesanan model-model latihan YOLOv5 dalam mengesan kegagalan bawah 

ekstrusi. Model YOLOv5x mencapai ketepatan 99%, ingatan semula 100%, dan min 

purata 99%, melebihi prestasi model-model lain. Kajian ini memberi sumbangan 

kepada kecerdasan pencetak 3D dengan mengurangkan pembaziran bahan dan masa 

yang terbuang akibat cetakan yang gagal. Selain itu, pendekatan latihan yang 

dicadangkan dapat diperluas untuk mengenal pasti jenis kegagalan pencetakan 3D 

yang lain.
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The industrial term for 3D printing is additive manufacturing (AM), which is a 

computer-controlled technique that builds three-dimensional products by depositing 

materials in layers. 3D printing is widely used in industries such as manufacturing, 

medicine, and other industries. Numerous studies have been conducted on 3D printers 

because of its expanding applications. The speed, low prototyping costs and flexibility 

of 3D printers make it superior compared to conventional methods such as mould 

processing.  

The 3D printing technology of fused deposited material (FDM) has progressed 

to such a point that it cannot be made only with several materials and requires the 

incorporation of a variety of technologies. The material extrusion technique is one of 

the most extensively utilized 3D printing procedures due to the low cost and wide 

variety of materials that can be used. Nonetheless, during printing operations, defects 

in the printed model are often undetected. The printers will simply continue the 

printing job while ignoring any defects on the printed model. For FDM 3D printers to 

be used productively in industry, there are still issues that need to be resolved, despite 

the fact that the core technology is already established several years ago [1]-[3].  

There are numerous types of failures in 3D printing and one of them is under-

extrusion as shown in Figure 1.1. This type of failure occurs due to multiple reasons 

such as insufficient extrusion speed, low melting temperature of the filament during 

printing, partial blockage of the nozzle, or a worn-out extruder gear. Extrusion failures 

may result in undesirable layer gaps, missing layers, and even holes in the printed 

objects, making the models unusable. Currently, most off-the-shelf 3D printers often 
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lack a dedicated system for intelligently tracking and monitoring the printing process. 

Even if there are potential faults in the print, 3D printers are programmed to continue 

printing the assigned part until all layers are completed [4].  

 

 
Figure 1.1: Under extrusion failure in Ultimaker 3D printer [5] 

 

In the worst-case scenario, print failures may affect and destroy the entire 

machine. Under normal circumstances, the 3D printing process must be restarted, and 

the failed materials are usually discarded, which result in the consumption of time and 

materials [6]. To prevent such issues, it is imperative for the human operator to 

periodically monitor the printing process manually, which can be a burdensome task. 

Thus, real-time quality control remains a significant challenge in 3D printing. 

Automatic detection of defects during the printing process can effectively minimise 

the waste of material and time . Integrating stages into the printing process can trigger 

an alarm to pause or stop the printing process, allowing corrective measures to be 

implemented to avoid reprinting of model parts. 
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1.2 Problem Statement 

Despite the fact that FDM 3D printers have the ability to easily fabricate real parts in 

a shorter period and at a lower cost compared to traditional manufacturing methods, 

they still lack the intelligence required to detect and identify failures in the printed 

model during the printing process. Instead, the printers will simply continue printing 

while totally ignoring even the most significant defects in the printed model. In the 

worst-case scenario, these failures can potentially affect and damage the entire 

machine. Under normal circumstances, the 3D printing process must be restarted, and 

the failed materials are usually discarded. In order to avoid this issue, it is necessary 

for the human operator to periodically monitor the printing process manually, which 

can be a burdensome task. This approach results in inefficient use of human resources, 

especially for large printing farms that can fit up to 300 3D printers at a time [7]. 

However, a significant amount of time, investment and energy usage is excessively 

wasted as unplanned machine downtime, which costs industrial manufacturers 

approximately RM 233 billion annually. Equipment failures account for 42% of this 

cost, with energy charges contributing more than RM 46 billion in context of reliability 

importance of industrial manufacturing [8].  

1.3 Objectives 

The objectives of this research is to investigate a deep learning approach for detecting 

under-extrusion failures in the advanced additive manufacturing of FDM 3D printers. 

The subsequent objectives of this study were: 

 

a) To obtain a dataset of under extrusion failures of FDM 3D printing. 

b) To design detection algorithm to identify 3D printing failures based on deep 

learning approach using YOLOv5 models. 
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1.4 Scopes of Study 

The scopes of the research were outlined as follows: 

 

a) The failure dataset consisted of 2400 augmented samples derived from 200 

samples of 3D printed material with intended under-extrusion condition and 

samples that were sets below 10cm. 

b) The failure detection was based on vision system using a high quality camera 

with a 4K resolution that  focused on detecting under-extrusion conditions. 

c)  The research involved training YOLOv5 models on the dataset and evaluating 

their performance using various metrics. YOLOv5s, YOLOv5m, YOLOv5l 

and YOLOv5x were used for training and detecting under-extrusion datasets. 

Each of these models represents a different variant of the YOLOv5 

architecture, characterized by varying sizes and complexities. These variants 

are designed to handle different scales and complexities of objects in the input 

data. By utilizing these different YOLOv5 models, the research aimed to 

explore and compare their performance in accurately identifying under-

extrusion instances, employing various evaluation metrics to assess their 

effectiveness.  

d) Google Colab was utilized as a data training and model evaluation platform. 

The use of Google Colab GPU runtime accelerated the training process. The 

trained models, logs and figures were saved on Google Drive for further 

analysis. 

e) Results comparisons are in terms of training performance of YOLO models 

architecture and image sizes which are 600,1200, and 2400 images. The total 

number of images determined based on the size and diversity of the dataset 

being used. A larger dataset with more diverse samples can provide more 

robust and generalizable results. 

1.5 Research Contributions 

a) This study focused on under-extrusion failures, which were chosen due to their 

significant impact on the quality of 3D printed objects. By intentionally 
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modifying the code of printed samples to produce under-extrusion failures at a 

40% rate of filament extrusion, ready-to-use under-extrusion datasets were 

created. These datasets served as a foundation for the research, supporting 

performance analysis and deep learning algorithm design.  

b) In order to collect samples continuously, an automatic system was built by 

utilizes a Raspberry Pi 4 to automate the process of sample collection and data 

acquisition. By adding instructions to the 3D printer and webcam, the system 

can continuously gather data without manual intervention, reducing the time 

and effort required for collecting samples and evaluating data. 

c) This automated system made a fundamental contribution to the technology of 

3D printing failure detection by helping to minimise downtime and the waste 

of filament in 3D printing. Errors can now be spotted online and corrected at 

an early stage. Datasets are gathered and analysed so that the system can be 

improved in future works by deploying it in a more stable environment. 

Interface and algorithms from this system can be implemented in cloud-based 

manufacturing as it will provide datasets to others. 

d) This research focused on the development of a system for automated data 

acquisition and failure detection in 3D printing. This is a valuable contribution 

to the field as it has the potential to minimize downtime and waste in 3D 

printing processes. The use of YOLOv5 for object detection is a key 

component of this system, allowing for accurate and efficient failure detection. 

1.6 Thesis Outline 

The structure of this thesis was organised in the following manner. Chapter 1 discussed 

the background and context of this research, including the identification and discussion 

of problems in the 3D printing process. The research objectives, contributions, 

publications and awards throughout the research timeline were also presented. Chapter 

2 reviewed relevant literature to review the research within existing concepts and 

identify areas for future research. Chapter 3 explained the methodology, detailing the 

data gathering with a focus on continuous data collection of under-extrusion failures. 

And the results were presented in Chapter 4. Chapter 5 discussed the research findings, 

limitations and future research opportunities. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

 

FDM 3D printing technology has been used as a swift and accurate prototyping method 

in recent years. FDM is one of the most adopted methods in 3D printers because it uses 

relatively simple machineries and provides various material selections [9]. The main 

application of 3D printing is in the industrial and manufacturing sectors [10]. 

Previously, 3D printing machines were mainly implemented for the rapid 

manufacturing of plastic prototypes [11]. Even though 3D printing has marginally 

reduced prototyping and manufacturing cost with lesser amount of time; however, 

some failures are common and universal when using the FDM system. Such failures 

are clogged nozzle, invasion of foreign substances, material deformation and collapse 

of printed model due to various reasons [12]. All these failures are unforeseeable and 

difficult to detect, thus resulting in waste of time, money and energy power 

consumption. A failure detection method which was introduced in 2014 by several 

researchers had adopted optical inspection by using 2D laser triangulation scanner 

[13]. However, the problem was that high surrounding temperature during 3D printing 

process hindered the operation of optical sensors. A patent was previously filed which 

proposed a capacitive detector as it can operate within a high temperature. 

Nevertheless, it can only detect clogging or potentially clogging status but not the 

condition of the printed model [14]. Other researchers have also proposed a method to 

detect various deposition statuses in the FDM process [15]. Recently, a monitoring 

system was developed to identify FDM machine failures based on the inertia of 

machine [16]. Nevertheless, all the suggested methods were not able to give early 

detection of failures in the printed model. There have been a number of techniques 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



7 
 

described to enhance fault diagnosis performance through deep learning methods. One 

of the recently discovered techniques is machine learning method that has been applied 

to industries for identifying failures in FDM 3D printing. Such algorithms require a 

huge amount of computer power for large volumes of data, especially for image data. 

For instance, [17] makes it impossible to respond to errors in a timely manner since 

calculations take longer than the duration of a single printing shift. Advanced 

computation and analysis techniques are needed in order to continuously analyse this 

high dimensional and high frequency data [18]. The advancement of machine learning 

in this area has enormous potential. The commonly used deep learning technique, 

which is a specialised subset of machine learning, has performed well in classifying 

parameters and modulation recognition tasks. This method has been effectively 

applied in these areas. Most of the current applications give little thought to the amount 

of data being used. Real historical data for modulation recognition may be lacking in 

practice. Therefore, training recognition models with modest amounts of data is 

preferable. The performance of deep learning models depends on having enough data, 

presenting a significant challenge [19]. 

For example, [20] designed a deep learning system that would classify the most 

recent image of an unfinished 3D printed part in order to identify failure in the 3D 

printing process. The total average accuracy of this system is 70%. This demonstrates 

that majority of the printing errors can be identified by this algorithm, thus helping to 

reduce waste produced by uncontrolled printing of faulty parts. [21] also employed a 

convolutional neural network (CNN) to construct a monitoring system for a 3D printer 

specifically for the error of warping. The algorithm concentrates exclusively on the 

important area in the bottom corners of the printed object, where the error is predicted 

to guarantee the best possible monitoring of the warping error. They tested the results 

using various geometries and achieved an accuracy of 97% using the suggested 

technique.  

 [22] proposed a system which included a digital microscope for real-time 

image capture, a high precision image classification algorithm to track the progress of 

the printing process, and a proportional, integral, derivative (PID) controller for 

closed-loop control. They demonstrated how well the system can detect the types and 

severity of errors as well as how a feedback control method can be used to perform 

process parameter adjustments to minimize defects. In a subsequent article, [23] an 

image-based closed-loop quality control system was created for fused filament 
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fabrication (FFF), which is a common AM method. A proposed image diagnosis-based 

feedback quality control approach was used in conjunction with a customised online 

image acquisition system to execute this system. With the use of online automated 

machine parameter modification, the typical quality difficulties can be effectively and 

efficiently mitigated. Their case studies using a real FFF platform demonstrated the 

usefulness and applicability of the suggested method. Additionally, other reviews were 

discussed in this chapter, including previous findings and methods. 

2.2 Previous Research on Failure Detection of 3D Printing 

Inertial Machine Monitoring System (IMMS) was developed for automated 

failure detection in a high-end machine, especially in a 3D printer [24]. This system 

consists of two types of sensors which have been proven to be qualified for equipment 

failure detection. Microphones are used in this system to detect failures by using sound 

vibration monitoring. A microphone is used to record the moving noise of 

switchblades during the operation of railway infrastructure. Statistical Features are 

used to detect and classify three failure scenarios with an accuracy exceeding 94.1%. 

Microphones are also used for acoustic processing for joint fault diagnosis of legged 

robots. Microphone-based approaches mainly focus on sound in the high-frequency 

spectrum. This system is configured with a network of inertial measurement units 

(IMUs). To record real-world performance data, a linear axis 3D printer was equipped 

with 36 IMMS sensor modules. The sensors were placed in 3D-printed holders and 

epoxy-glued on the machine as shown in Figure 2.1. 

 

Figure 2.1: Sensor module location on FDM 3D printer [24] 
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Based on the research, two scenarios were tested: (1) data from all 36 sensors 

and (2) data from four sensors. Three sensors were attached to moving machine 

components (X, Y and Z axis) while one sensor was placed on the inner metal case. In 

scenario (1), the Coarse Gaussian Kernel had the best performance with a 27.3% error 

rate among all support vector machine (SVM) classifiers. The feedforward neural 

network was reported to achieve similar results. In scenario (2), the overall error 

performance of SVM and neural network showed an improvement. This indicated that 

sensors attached to moving machine components alone were not sufficient to properly 

classify all failure scenarios. Table 2.1 reports the result of the error performance based 

on different classifiers. 

Table 2.1: Error performance based on classifier [24] 

Classifier (with statical features) 
Error Performance 

(1) All Sensors (2) Moving Parts

Random Guess 90.90% 90.90% 

SVM – Linear Kernel 37.30% 36.40% 

SVM – Quadratic Kernel 38.20% 36.40% 

SVM – Fine Gaussion Kernel 38.20% 36.40% 

SVM – Cubic Gaussion Kernel 90.90% 71.80% 

SVM – Medium Gaussion Kernel 45.50% 36.40% 

SVM – Coarse Gaussion Kernel 27.30% 45.50% 

Feedforward Neural Network 27.30%  ± 0.8% 20 
Neutrons 

38.20%  ± 4.5%  91 Neutrons 

IMMS has showed that inertial sensor networks can be successfully used to 

reliably detect and classify 10 different machine failures or states of degraded 

operation. With an increasing number of Internet of Things (IoT) sensors on the 

manufacturing floor, predictive maintenance of industrial equipment guarantees higher 

efficiency and productivity. By providing valuable failure classification and early 

detection of machine degradation, IMMS can contribute to the development of smart 

monitoring systems to help in minimising machine downtime.  

Previously, consumer-grade video cameras with video analysis software were 

used and mounted onto a Makerbot Replicator 2X 3D printer [25]. OpenCV Version 

3.0 and the Python API are used in this system as this software provides recent 

algorithms for image detection, manipulation and recognition. To detect errors from 
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