AN ULTRA-WIDEBAND ANTENNA WITH TRIPLE BAND-NOTCHED CHARACTERISTICS FOR WEARABLE APPLICATION

MUNIRAH AZ ZAHRA BINTI ABDUL RASHID

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > APRIL 2023

Special dedication to my beloved family, supervisor, co-supervisors, lecturers and friends who have encouraged, guided and inspired me throughout this journey of education.

ACKNOWLEDGEMENT

iv

I would like to express my heartfelt gratitude to Dr. Shaharil bin Mohd Shah, for his constant guidance and support. I counted myself fortunate to have been given the opportunity to work under his supervision. I owe him gratitude for his encouragement and intellectual collaboration in framing my work at each stage. I appreciate his keen advice, concern, and perseverance. Additionally, I am thankful to my co-supervisors, Dr. Huda bin A Majid and Assoc. Prof. Ts. Dr. Asmarashid bin Ponniran, for their guidance during the years of my postgraduate studies. My family — particularly my parents, Abdul Rashid bin Abdul Hamid and Majidah binti Musa — deserves special recognition for their unending love and support throughout the completion of this work.

ABSTRACT

This work presents a compact UWB antenna with triple band-notched at WiMAX (3.2 – 3.7 GHz), C-band (3.7 – 4.2 GHz) and WLAN (5.15 – 5.35 GHz) for wearable applications. The UWB antenna is fabricated on two different flexible substrates which are thin FR-4 and Rogers Duroid RO3003TM. The two substrates are selected so that the performance of the lossy material (thin FR-4) and the low-loss material (RO3003TM) can be compared. In order to reduce the complexity, only two slots are introduced on the radiating patch instead of three slots to reject each narrowband frequency. In this case, one slot rejects a combination of WiMAX and C-band and the other slot rejects the WLAN frequency band. The UWB antenna on the thin FR-4 has an overall size of 21×16 mm², whereas the UWB antenna on RO3003TM substrate is 19×14 mm², both of which are very compact and thus, suitable for wearable applications without causing discomfort when worn on body. Although the antennas are small in size, their performance is not compromised. The UWB antenna with the thin FR-4 has the frequency range from 2.51 GHz to 12.09 GHz, maximum radiation efficiency of 100% and maximum gain of 4 dBi. Meanwhile, the UWB antenna with RO3003TM has the frequency range from 2.83 GHz to 10.78 GHz, maximum radiation efficiency of 80% and maximum gain of 4 dBi. Nevertheless, both antennas are able to reject the WiMAX and C-band as well as the WLAN band. The simulated Specific Absorption Rate (SAR) results show that both antennas comply with the SAR limit Federal Communication Commission (FCC) and International Commission of Non-Ionizing Radiation Protections (ICNIRP) standards for 1 mW input power. Bending investigations performed on different diameters of Styrofoam cylinders shows that the frequency range and the notch bands are not very much affected. Therefore, it is safe to conclude that the triple band notched UWB antennas in this work are suitable to be used for wearable applications.

ABSTRAK

Kajian ini membentangkan antena ultra jalur lebar (UWB) bersaiz kecil dengan takukan tiga jalur pada frekuensi WiMAX (3.2 – 3.7 GHz), jalur-C (3.7 – 4.2 GHz) and WLAN (5.15 – 5.35 GHz) untuk penggunaan aplikasi boleh pakai. Antena UWB ini direka menggunakan dua substratum anjal berbeza iaitu FR-4 nipis serta Rogers Duroid RO3003TM. Kedua-dua substratum dipilih supaya prestasi bahan yang mempunyai kehilangan tinggi (FR-4 nipis) dan bahan kehilangan rendah (RO3003TM) boleh dibandingkan. Untuk mengurangkan kerumitan, hanya dua lubang alur direka bentuk pada tampalan antenna untuk menolak ketiga-tiga jalur frekuensi. Dalam kerja ini, satu lubang alur menolak gabungan frekuensi WiMAX dan jalur-C, dan lubang alur yang lain menolak jalur frekuensi WLAN. Perbandingan menunjukkan bahawa antena UWB dengan substratum RO3003TM mempunyai dimensi yang lebih kecil iaitu $19 \times 14 \text{ mm}^2$ berbanding dengan FR-4 nipis yang mempunyai dimensi $21 \times 16 \text{ mm}^2$ di mana kedua-duanya sangat kecil. Oleh itu, kedua-dua antenna sesuai bagi aplikasi boleh pakai tanpa menyebabkan ketidakselesaan apabila dipakai pada badan. Walaupun dimensi kedua-dua antena adalah kecil, prestasinya tidak terjejas. Antena UWB dengan FR-4 nipis mempunyai julat frekuensi operasi daripada 2.51 GHz hingga 12.09 GHz dengan kecekapan sinaran berbagai hingga 100% dan gandaan sebanyak 4 dBi. Manakala, antena UWB dengan RO3003TM mempunyai julat frekuensi operasi daripada 2.83 GHz hingga 10.78 GHz, kecekapan sinaran berbagai sebanyak 80% dan gandaan maksimum 4 dBi. Namun begitu, kedua-dua antena mampu menolak jalur WiMAX, jalur-C serta jalur WLAN. Hasil penyelakuan Kadar Penyerapan Tentu (SAR) menunjukkan bahawa kedua-dua antena mematuhi had SAR ditetapkan oleh Suruhanjaya Komunikasi Persekutuan (FCC) dan piawaian Suruhanjaya Perlindungan Sinaran Tidak Pengionan Antarabangsa (ICNIRP) untuk kuasa input 1 mW. Kajian kekuatan lenturan menggunakan gabus silinder dengan garis pusat berbeza menunjukkan bahawa julat frekuensi dan jalur-jalur takuk antena tidak terlalu terjejas. Oleh itu, boleh disimpulkan bahawa kedua-dua antena UWB dengan takukan tiga jalur dalam kerja ini sesuai digunakan dalam aplikasi boleh pakai.

CONTENTS

	TITL	LE	i	
	DEC	LARATION	ii	
	DED	ICATION	iii	
	ACK	NOWLEDGEMENT	iv	
	ABS	ГКАСТ	V	
	ABS	ГКАК	vi	
	CON	TENTS	vii	
	LIST	OF TABLES	xi	
	LIST	OF FIGURES	xiii	
	LIST	OF SYMBOLS AND ABBREVIATIONS	xx	
	LIST	OF APPENDICES	xxii	
CHAPTER 1	INTF	RODUCTION	1	
	1.1	Research Background	1	
	1.2	Problem Statement	2	
	1.3	Objectives	3	
	1.4	Scopes	3	
	1.5	Research Contribution	4	
	1.6	Thesis Outline	5	
CHAPTER 2	LITE	CRATURE REVIEW	7	
	2.1	Overview	7	
	2.2	UWB Antenna Requirement	7	
	2.3	Techniques to Increase Bandwidth of UWB		
		Antenna	9	
	2.4	Notched-Band Requirement for UWB		
		Antenna	11	
	2.5	Ultra-Wideband Antenna for Wearable		
		Application	14	
	2.6	Substrates Materials for Wearable Antenna	15	

vii

		2.6.1	FR-4 Substrate	15
		2.6.2	RO3003 TM Substrate	16
	2.7	Previou	s Work on UWB Antenna with Band-	
		Notche	d Characteristics for Wearable	
		Applica	ations	17
CHAPTER 3	RESE	EARCH	METHODOLOGY	23
	3.1	Introdu	ction	23
	3.2	Antenn	a Design Process	23
	3.3	Ultra-W	Videband Antenna Design	26
	3.4	Scheme	e Used for Band-Notched	
		Charact	teristics	27
	3.5	Simulat	tions based on CST MWS [®] Software	28
		3.5.1	UWB Antennas Design in CST	
			MWS [®] Software	28
	3.6	Specific	c Absorption Rate (SAR) Simulation	29
	3.7	Fabrica	tion of Ultra-Wideband Antennas	
		with Tr	iple Band-Notched Characteristics	30
	20	Dandin	g Investigation	33
	5.8	Denuin	g mvestigation	55
	3.8 3.9	Testing	and Measurement Setup	35
CHAPTER 4	3.8 3.9 UWB	Testing ANTE	and Measurement Setup	35
CHAPTER 4	3.8 3.9 UWB BANI	Testing ANTE	and Measurement Setup CNNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE	35 35 37
CHAPTER 4	3.8 3.9 UWB BANI 4.1	Testing ANTE DS ON T Overvie	and Measurement Setup CNNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew	35 35 37 37
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 	Testing ANTE DS ON T Overvie The Fur	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna	35 35 37 37 38
CHAPTER 4	3.9 UWB BANI 4.1 4.2	Testing ANTE DS ON T Overvie The Fun 4.2.1	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach	35 35 37 37 38 38
CHAPTER 4	3.9 UWB BANI 4.1 4.2	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study	35 35 37 37 38 38 40
CHAPTER 4	3.9 UWB BANI 4.1 4.2	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR	 35 35 37 37 38 38 40 41
CHAPTER 4	3.9 UWB BANI 4.1 4.2	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance	35 35 37 37 38 38 40 41 43
CHAPTER 4	3.9 UWB BANI 4.1 4.2	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	and Measurement Setup CNNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient	35 35 37 37 38 38 40 41 43 44
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 4.3 	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 UWB-F	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna	35 35 37 37 38 38 40 41 43 44 44
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 4.3 	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 UWB-F 4.3.1	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach	35 35 37 37 38 38 40 41 43 44 44 44 44
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 4.3 	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 UWB-F 4.3.1 4.3.2	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach Parametric Study	35 35 37 37 38 38 40 41 43 44 44 44 44 46
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 4.3 	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 UWB-F 4.3.1 4.3.2 4.3.3	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR	35 35 37 37 38 38 40 41 43 44 44 44 44 44 47
CHAPTER 4	 3.9 UWB BANI 4.1 4.2 4.3 	Testing ANTE DS ON T Overvie The Fun 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 UWB-F 4.3.1 4.3.2 4.3.3 4.3.4	and Measurement Setup ENNA WITH TRIPLE NOTCH THIN FR-4 SUBSTRATE ew ndamental UWB-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach Parametric Study Reflection Coefficient and VSWR Measured Reflection Coefficient	35 35 37 37 38 38 40 41 43 44 44 44 44 44 44 48

		4.4.1	Design Approach	50
		4.4.2	Parametric Study	51
		4.4.3	Reflection Coefficient and VSWR	52
		4.4.4	Measured Reflection Coefficient	53
	4.5	UWB-T	TN-FR4 Antenna	55
		4.5.1	Design Approach	55
		4.5.2	Parametric Study	56
		4.5.3	Reflection Coefficient and VSWR	58
		4.5.4	Input Impedance	59
		4.5.5	Measured Reflection Coefficient	61
		4.5.6	Radiation Patterns	62
		4.5.7	Gain, Radiation Efficiency and	
			Radiated Power	64
		4.5.8	Surface Current Distribution	66
		4.5.9	Bending Investigation	68
		4.5.10	Specific Absorption Rate (SAR)	
			Validation through Simulation	70
	4.6	Conclus	sion	71
CHAPTER 5	4.6 UWB	Conclus ANTE	sion CNNA WITH TRIPLE NOTCH	71
CHAPTER 5	4.6 UWB BANI	Conclus ANTE OS ON R	sion CNNA WITH TRIPLE NOTCH CO3003 TM SUBSTRATE	71 73
CHAPTER 5	4.6 UWB BANI 5.1	Conclus ANTE OS ON R Overvie	sion CNNA WITH TRIPLE NOTCH CO3003 TM SUBSTRATE	71 73 73
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R	sion CNNA WITH TRIPLE NOTCH CO3003 TM SUBSTRATE ew RO Antenna	71 73 74
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1	sion ENNA WITH TRIPLE NOTCH ECO3003TM SUBSTRATE ew RO Antenna Design Approach	71 73 74 74
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2	sion ENNA WITH TRIPLE NOTCH CO3003TM SUBSTRATE ew RO Antenna Design Approach Parametric Study on Length of	71 73 73 74 74
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2	sion ENNA WITH TRIPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, <i>L</i> g	71 73 73 74 74 76
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3	sion EXAMPLE NOTCH EXAMPLE NOTCH EXAMPLE NOTCH EXA	71 73 73 74 74 76
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3	sion EXAMPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, L_g Reflection Coefficient Response and VSWR	 71 73 73 74 74 76 76
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3	sion EXAMPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, L_g Reflection Coefficient Response and VSWR Input Impedance	 71 73 73 74 74 76 76 78
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.2.5	sion EXAMPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, <i>L</i> g Reflection Coefficient Response and VSWR Input Impedance Measured Reflection Coefficient	 71 73 73 74 74 76 76 78 79
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.2.5 UWB-F	sion EXAMPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, <i>L</i> g Reflection Coefficient Response and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna	 71 73 73 74 74 76 76 78 79 79 79
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.2.5 UWB-F 5.3.1	sion EXAMPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, <i>L</i> g Reflection Coefficient Response and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach	 71 73 73 74 74 76 76 78 79 70 70 71 71 71 71 71 71 71 71 79 <
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.2.5 UWB-F 5.3.1 5.3.2	sion ENNA WITH TRIPLE NOTCH CO3003TM SUBSTRATE W RO Antenna Design Approach Parametric Study on Length of Partial Ground Plane, <i>L</i> g Reflection Coefficient Response and VSWR Input Impedance Measured Reflection Coefficient FN-FR4 Antenna Design Approach Parametric Study of Total Length of	 71 73 73 74 74 76 76 78 79 79 79 79 79 79 79 79
CHAPTER 5	4.6 UWB BANI 5.1 5.2	Conclus ANTE OS ON R Overvie UWB-R 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.2.5 UWB-F 5.3.1 5.3.2	sion EXAMPLE 11 OF CONTENTION OF CONTENT OF CONTENT.	 71 73 73 74 74 76 76 78 79 79 79 79 79 81

		5.3.4	Measured Reflection Coefficient	83
	5.4	UWB-S	SN-FR4 Antenna	84
		5.4.1	Design Approach	84
		5.4.2	Parametric Studies	86
		5.4.3	Reflection Coefficient and VSWR	87
		5.4.4	Measured Reflection Coefficient	89
	5.5	UWB T	N-RO Antenna	90
		5.5.1	Design Approach	90
		5.5.2	Parametric Studies	92
		5.5.3	Reflection Coefficient and VSWR	93
		5.5.4	Input Impedance	94
		5.5.5	Measured Reflection Coefficient	96
		5.5.6	Radiation Patterns	97
		5.5.7	Gain, Efficiency and Radiated	
			Power	99
		5.5.8	Surface Current Distribution	101
		5.5.9	Bending Investigation	103
		5.5.10	Specific Absorption Rate (SAR)	
			Validation through Simulation	105
	5.6	Conclus	sion	106
CHAPTER 6	CONC	CLUSIO	N AND RECOMMENDATION	108
	6.1	Conclus	sion	108
	6.2	Recom	mendation for Future Work	110
	REFE	ERENCE	es	111
	APPE	INDICES	S	124

LIST OF TABLES

1.1	Specification of the UWB antenna design	3
2.1	UWB antenna design requirements [44]	9
2.2	Summary of previous work on wearable UWB antenna	
	with band notch characteristics	21
3.1	The material parameter of layers of human body	
	models	30
3.2	The material parameter of layers of human body models	
	at the frequency of 3.1 GHz, 6.85 GHz and 10.6 GHz	
	[106]	30
4.1	Dimensions of the UWB-FR4 antenna	40
4.2	Dimensions of the first slot to notch the WiMAX and C-	
	band	46
4.3	Dimensions of the slot to notch the WLAN band	51
4.4	Dimensions of the two slots to notch the WiMAX, C-	
	and WLAN bands	56
4.5 R	Simulated values of SAR with different input power for	
	1 g human tissue	71
4.6	Simulated SAR values at three resonant frequencies of	
	UWB antenna for 10 g human tissue with 1 mW input	
	power	71
5.1	Dimensions of the UWB-RO antenna	75
5.2	Dimensions of the first slot to notch the WiMAX and C-	
	band	81
5.3	Dimensions of the second slot to notch the WLAN	
	band	86
5.4	Dimensions of the two slots to notch the WiMAX, C-	
	and WLAN bands	91

5.5	Simulated values of SAR at different input power for 1	
	g of human tissue	106
5.6	Simulated values of SAR at 1 mW input power for 10 g	
	of human tissue	106
6.1	Comparison between the two substrates on triple notch	
	bands UWB antenna	109

LIST OF FIGURES

2.1	UWB antenna with partial ground plane for bandwidth	
	enhancement [52]	11
2.2	Multiple inverted L-shaped stubs for triple notched-band	
	UWB antenna [64]	13
2.3	Four semicircular U-shaped slots on UWB antenna with	
	band-notched characteristics [74]	14
2.4	Prototype of the UWB antenna on FR-4 in [87]	16
2.5	Front and back view of the fabricated prototype antenna	
	proposed in [89]	17
2.6	Antenna with 3-layer human body model [93]	18
2.7	UWB antenna on PDMS substrate [94]	19
2.8	UWB antenna on FR-4 substrate [95]	19
2.9	Proposed UWB antenna on military textile [97]	20
3.1	Flowchart of the work	25
3.2	Simulated UWB antennas in CST MWS® software (a)	
	UWB-TN-FR4 (b) UWB-TN-RO	28
3.3	The simplified tissue model	29
3.4	UWB antennas with FR-4 substrate	31
3.5	UWB antennas with RO3003 TM substrate (a) UWB-RO	
	(b) UWB-FN-RO (c) UWB-SN-RO (d) UWB-TN-RO	33
3.6	Antenna bent on vacuum cylinder	34
3.7	Bending conditions of antennas on different diameters of	
	vacuum cylinders (a) $d = 50 \text{ mm}$ (b) $d = 70 \text{ mm}$ (c) $d =$	
	80 mm (d) $d = 100$ mm	34
3.8	UWB antennas' bent on Styrofoam cylinder (a) UWB-	
	TN-FR4 (b) UWB-TN-RO	35
3.9	Cylindrical Styrofoam with four different diameters; 50	
	mm, 70 mm, 80 mm and 100 mm	35

3.10	N5234B Keysight Network Analyzer	36
3.11	Measurement approach for the proposed antenna	36
4.1	The rectangular patch UWB antenna [17]; (a) Top view	
	(b) Bottom view	39
4.2	The proposed UWB-FR4 antenna; (a) Top view (b)	
	Bottom view	39
4.3	Prototype of fabricated UWB-FR4 antenna on FR-4	
	substrate	40
4.4	Reflection coefficients of proposed UWB-FR4 antenna	
	with various slot's width, W_d in the ground plane	41
4.5	Simulated reflection coefficient of the UWB-FR4	
	antenna	42
4.6	Simulated VSWR of the UWB-FR4 antenna	42
4.7	Simulated input impedance of the proposed UWB-FR4	
	antenna;	43
4.8	Comparison between the simulated and measured	
	reflection coefficient of the UWB-FR4 antenna	44
4.9	The UWB-FN-FR4 antenna (a) Top view (b) Bottom	
	view	45
4.10	The prototype of fabricated UWB-FN-FR4 antenna	46
4.11	Effects of slot length of the UWB-FN-FR4 antenna for	
	WiMAX and C-band notch	47
4.12	Simulated reflection coefficient of the UWB-FN-FR4	
	antenna	48
4.13	VSWR of the simulated UWB-FN-FR4 antenna	48
4.14	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-FN-FR4	
	antenna	49
4.15	The comparison of measured reflection coefficient of the	
	proposed UWB-FN-FR4 antenna with UWB-FR4	49
4.16	The UWB-SN-FR4 antenna (a) Top view (b) Bottom	
	view	50
4.17	The prototype of fabricated UWB-SN-FR4 antenna	51

4.18	Effects of slot's length of the UWB-SN-FR4 antenna for	
	WLAN band notch	52
4.19	Simulated refection coefficient and bandwidth of the	
	UWB-SN-FR4 antenna with second slot to notch the	
	WLAN band	53
4.20	VSWR of the simulated UWB-SN-FR4 antenna with	
	second slot to notch the WLAN band	53
4.21	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-SN-FR4	
	antenna with WLAN notch band	54
4.22	Comparison of measured reflection coefficient of the	
	proposed UWB-SN-FR4 antenna with UWB-FR4	54
4.23	The UWB-TN-FR4 antenna (a) Top view (b) Bottom	
	view	55
4.24	Prototype of fabricated UWB-TN-FR4 antenna	56
4.25	Reflection coefficient corresponding to widths of the	
	first slot, W ₃	57
4.26	The effect of total length variation on WLAN notch	
	band	57
4.27	Simulated reflection coefficient of the UWB-TN-FR4	
	antenna	58
4.28	VSWR of the simulated UWB-TN-FR4 antenna	59
4.29	Simulated input impedance plot of the proposed UWB-	
	TN-FR4 antenna; (a) Input resistance (b) Input	
	admittance	60
4.30	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-TN-	
	FR4 antenna	61
4.31	Comparison of measured reflection coefficient of the	
	proposed	62
4.32	Radiation patterns of the UWB-TN-FR4 antenna at	
	resonant frequency of 3.1 GHz; (a) 2D (b) 3D	63
4.33	Radiation patterns of the UWB-TN-FR4 antenna at	
	resonant frequency of 6.85 GHz; (a) 2D (b) 3D	63

xv

4.34	Radiation patterns of the UWB antenna with two slots at	
	resonant frequency of 10.6 GHz; (a) 2D (b) 3D	64
4.35	Simulated gain and radiation efficiency plots of the	
	proposed UWB-TN-FR4 antenna with triple notch	
	bands characteristics	65
4.36	Simulated power radiation plot of the proposed UWB-	
	TN-F antenna with triple notch band characteristics	65
4.37	Simulated surface current distribution of the UWB-TN-	
	FR4 antenna bands at; (a) 3.1 GHz (b) 6.85 GHz (c)	
	10.6 GHz	66
4.38	Simulated surface current distribution of the UWB-TN-	
	FR4 antenna at; (a) 3.52 GHz (b) 5.25 GHz	67
4.39	Simulated surface current distribution of the	
	fundamental UWB-FR4 antenna at; (a) 3.52 GHz (b)	
	5.25 GHz	68
4.40	Simulated reflection coefficient for different bending	
	diameters	69
4.41	Measured reflection coefficient for different bending	
	diameters of the UWB-TN-FR4 antenna	70
4.42	Simulated SAR results of UWB-TN-FR4 with different	
	values of input power	71
5.1 R	The proposed UWB-RO antenna; (a) Top view (b)	
	Bottom view	75
5.2	The prototype of UWB-RO antenna	75
5.3	Reflection coefficient of proposed antenna for	
	parametric studies	76
5.4	Simulated reflection coefficient of the UWB-RO	
	antenna	77
5.5	VSWR of the simulated UWB-RO antenna	77
5.6	Simulated input impedance plot of the proposed UWB-	
	RO antenna (a) input resistance (b) input admittance	78
5.7	Comparison between the simulated and measured	
	reflection coefficient of the UWB-RO antenna on	
	RO3003 TM substrate	79

5.8	The UWB-FN-RO antenna; (a) Top view (b) Bottom	
	view	80
5.9	The prototype of fabricated UWB-FN-RO antenna with	
	a slot to notch the WiMAX band in $RO3003^{TM}$	80
5.10	Reflection coefficients of proposed antenna by varying	
	values of W _a	81
5.11	Simulated reflection coefficient of the UWB-FN-RO	
	antenna	82
5.12	VSWR of the simulated UWB-FN-RO antenna	83
5.13	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-FN-RO	
	antenna	84
5.14	Comparison of measured reflection coefficient of the	
	proposed UWB-FN-RO antenna with UWB-RO	84
5.15	Geometrical structure of the UWB-SN-RO antenna (a)	
	Top view (b) Bottom view	85
5.16	The prototype of fabricated UWB-SN-RO antenna	86
5.17	Reflection coefficient plot for different values of L	87
5.18	Simulated refection coefficient of the UWB-SN-RO	
	antenna to notch the WLAN band	88
5.19	VSWR of the simulated UWB-SN-RO antenna with a	
	slot to notch the WLAN band	88
5.20	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-SN-RO	
	antenna with WLAN notch band	89
5.21	Comparison of measured reflection coefficient of the	
	proposed UWB-FN-RO antenna with UWB-RO	90
5.22	The UWB-TN-RO antenna with the combination of two	
	slots to notch the WiMAX, C- and WLAN bands (a) Top	
	view (b) Bottomview	91
5.23	The prototype of fabricated UWB-TN-RO antenna	91
5.24	Reflection coefficient plot for different values of L_1	92
5.25	Reflection coefficient plot for different values of L_2	93

5.26	Simulated reflection coefficient of the UWB-TN-RO	
	antenna with two slots to notch the WiMAX, C-band and	
	WLAN bands	94
5.27	VSWR of the simulated UWB-TN-RO antenna with two	
	slots to notch the WiMAX, C- and WLAN bands	94
5.28	Simulated input impedance plot of the proposed UWB-	
	TN-RO antenna with triple band-notched characteristics:	
	(a) input resistance (b) input admittance	95
5.29	The comparison between the simulated and the	
	measurement reflection coefficient of the UWB-TN-RO	
	antenna with triple notch bands	96
5.30	Comparison of measured reflection coefficient of the	
	proposed UWB-FN-RO antenna with UWB-RO	97
5.31	Radiation pattern of the UWB-TN-RO antenna with two	
	slots at resonant frequency of 3.1 GHz; (a) 2D (b) 3D	98
5.32	Radiation pattern of the UWB-TN-RO antenna with two	
	slots at resonant frequency of 6.85 GHz; (a) 2D (b) 3D	98
5.33	Radiation pattern of the UWB-TN-RO antenna with two	
	slots at resonant frequency of 10.6 GHz; (a) 2D (b) 3D	99
5.34	Simulated gain plot and radiation efficiency of the	
	proposed UWB-TN-RO antenna with triple notch bands	
	characteristic	100
5.35	Simulated power radiation plot of the proposed UWB-	
	TN-RO antenna with triple notch bands characteristic	100
5.36	Surface current distribution of the simulated UWB-TN-	
	RO antenna with two slots to notch the WiMAX and	
	WLAN bands at;	101
5.37	Surface current distribution of the simulated UWB-TN-	
	RO antenna with two slots to notch the WiMAX and	
	WLAN bands at; (a) 3.63 GHz (b) 5.30 GHz	102
5.38	Surface current distribution of the simulated UWB-RO	
	antenna at; (a) 3.63 GHz (b) 5.30 GHz	103
5.39	The simulated reflection coefficients of the UWB-TN-	
	RO antenna with a triple-band notch in bending	

	condition over a vacuum cylinder with varying	
	diameters of 50 mm, 70 mm, 80 mm and 100 mm	104
5.40	Measured reflection coefficient of the UWB-TN-RO	
	antenna with triple notch bands characteristics mounted	
	on different diameters of cylindrical Styrofoam	105
5.41	Simulated SAR results of UWB-TN-RO antenna with	
	different values of input power	106

LIST OF SYMBOLS AND ABBREVIATIONS

BAN	-	Body Area Network
CST MWS®	-	CST Microwave Studio [®]
EBG	-	Electromagnetic Band Gap
ECSRR	-	Complementary Split Ring Resonator
EIRP		Effective Isotropic Radiated Power
FCC	-	Federal Communication Commission
FR-4	-	Flame Resistant 4
ICNIRP	-	International Commission of Non-Ionizing Radiation
		Protections
РСВ	-	Printed Circuit Board
PDMS	-	Polydimethylsiloxane
$RO3003^{TM}$	-	Rogers Duroid 3003
SAR	-	Specific Absorption Rate
UWB	-	Ultra-Wideband
UWB-FR4	1-57	Fundamental UWB antenna with FR-4
UWB-FN-FR4	_	UWB antenna with first and second notch bands with
		FR-4
UWB-SN-FR4	-	UWB antenna with third notch band with FR-4
UWB-TN-FR4	-	UWB antenna with triple notch bands with FR-4
UWB-RO	-	Fundamental UWB antenna with RO3003 TM
UWB-FN-RO	-	UWB antenna with first and second notch bands with
		RO3003 TM
UWB-SN- RO	-	UWB antenna with third notch band with $RO3003^{TM}$
UWB-TN- RO	-	UWB antenna with triple notch bands with
		RO3003 TM
VSWR	-	Voltage Standing Wave Ratio
WBAN	-	Wireless Body Area Network

WiMAX	-	Wireless Interoperability for Microwave Access
WLAN	-	Wireless Local Area Network

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Calculation method to achieve the initial dimension	
	values of Ultra-Wideband antenna with $RO3003^{TM}$	124
В	Calculation method to achieve the initial dimension	
	values of Ultra-Wideband antenna with FR-4	126
С	Calculation method to achieve the initial dimension	
	values of slots for Ultra-Wideband antenna with	
	RO3003 TM	128
D	Calculation method to achieve the initial dimension	
	values of slots for Ultra-Wideband antenna with FR-4	130
Е	List of Achievements	131
F	VITA	133

CHAPTER 1

INTRODUCTION

1.1 Research Background

In February 2002, Federal Communication Commission (FCC) in the United States has licensed the Ultra-Wideband (UWB) frequency spectrum to operate between the frequency range from 3.1 GHz to 10.6 GHz for commercial use with an Effective Isotropic Radiated Power (EIRP) to be less than -41.4 dBm/MHz [1]. This emission limit is set so that the antenna can produce a lower permittable Specific Absorption Rate (SAR). SAR is an established mechanism for measuring the electromagnetic energy absorbed by biological tissue when exposed to radiated electromagnetic energy [2]. The SAR limit set by the FCC is 1.6 W/kg averaged over 1 g of actual tissue while the SAR limit recommended by the International Commission on Non-Ionising Radiation Protection (ICNIRP) is 2.0 W/kg averaged over 10 g of actual tissue [3].

Applications based on UWB technology have achieved considerable development due to their appealing characteristics, such as low power consumption, high speed transmission rate and ability to prepare for short range wireless communication links that use low-cost and low-energy transmitter or receiver; Wearable Body Area Network (WBAN) is among the most attractive application [4]. A wearable antenna is a key component for the WBAN network as it is responsible for transmitting and receiving the signal between the implantable device (such as pacemakers, heart rate monitors, and respiratory monitor) and wearable network [5], [6]. Furthermore, the wearable antenna is critical for a proper operation of the WBAN system as it can be placed on a human body and thus, the influence of the human on the characteristics of the antenna should be taken into account during the initial design stage [7].

An important consideration for UWB antennas is the strong interference from the existing wireless network technologies, for instance, Wireless Interoperability for Microwave Access (WiMAX) between 3.2 GHz to 3.7 GHz and C-band between 3.7 GHz to 4.2 GHz [8]–[10]. Besides, according to the IEEE 802.11a standard, for an UWB antenna to work in wearable and indoor applications, it should avoid the higher frequency band from 5.15 GHz to 5.35 GHz which is assigned for Wireless Local Area Network (WLAN) [11]. These three bands may cause interference and hence, reducing the performance of UWB antenna. As a result, it is appropriate notch the unwanted frequency bands that are susceptible to strong interference within the UWB frequency range.

1.2 Problem Statement

Electromagnetic (EM) interference with other existing wireless systems, radiation pattern deterioration under bending conditions [12], and the need for a compact antenna size are all challenges for Ultra-Wideband (UWB) antennas for wearable devices. Despite having a wide frequency range, UWB devices suffer from the consequences of having to share the spectrum with licensed and unlicensed wireless communication bands within the UWB bandwidth, such as World Interoperability for Microwave Access (WiMAX) service, Wireless Local Area Network (WLAN) IEEE802.11a and C-band operating in the 3.2 GHz to 3.6 GHz, 3.7 GHz to 4.2 GHz and 5.15 GHz to 5.35 GHz [13], [14]. Furthermore, EM interference from the strong narrow band signals within the UWB frequency band may overload the receiver. The narrow band signals are received as interfering noise by UWB receivers and have the potential to degrade the overall performance of UWB communication systems through data loss, signal interruption, and device failure [15]. Bandpass filters may be used to suppress the dispensable bands, but extra devices added to the system might lead to a rise in terms of cost, complexity, size and insertion losses [16].

Hence, a highly miniaturized UWB antenna with a triple band-notch characteristics is proposed in this work to alleviate the potential EM interference arises from the narrow band applications. The band-notched operations are achieved by etching slots in the rectangular metal radiating patch [17]. It has been realised that by adjusting the total length of the slot to be approximately quarter or half-wavelength of

the desired notched frequency, destructive interference can occur, rendering the antenna non-responsive at that frequency [18]. The designed antenna is compact in terms of the size which is $21 \times 16 \text{ mm}^2$ and is fabricated on a thin FR-4 substrate material to ensure flexibility. In addition, for comparison purposes, the UWB antenna with a triple band-notch is also fabricated on another flexible substrate material, Rogers Duroid 3003 (RO3003TM) with the size of $19 \times 14 \text{ mm}^2$. The performance of the UWB antenna in bending condition is investigated to ensure that it is suitable for wearable applications. In addition, the Specific Absorption Rate (SAR) imposed by the UWB antenna on the human body is assessed to ensure that the SAR results lie well within the FCC and ICNIRP regulated limits.

1.3 Objectives

The objectives of this work are as follows:

- To design, simulate and fabricate an UWB antenna with a triple notch band on Rogers Duroid 3003 and thin FR-4 substrate materials.
- ii. To measure and analyze the linear characteristics of fabricated wearable UWB antenna with triple notch bands.
- iii. To evaluate the performance of the antenna in bending condition and examine the SAR limits to ensure the antenna is suitable for wearable applications.

1.4 Scopes

The specification of the UWB antenna design in this work is listed in Table 1.1.

UWB antenna frequency	The frequency range of the UWB antenna is from 3.1 GHz to 10.6 GHz.
range	
Notched	WiMAX (3.2 GHz – 3.7 GHz),
frequency	C-band (3.7 GHz - 4.2 GHz) and
bands	WLAN (5.15 GHz – 5.35 GHz)
SAR simulation	The simulation of the antenna towards human body is conducted to determine the maximum SAR value that the human body tissue can tolerate and at the same time, obeys the limits as stipulated by the FCC and ICNIRP.
Antenna fabrication	The antenna is fabricated on a thin FR-4 substrate with a dielectric constant, ε_r of 4.5, loss tangent, tan δ of 0.019 and board thickness, <i>h</i> of 0.5 mm and Rogers

Table 1.1: Specification of the UWB antenna design

REFERENCES

- [1] "Federal Communication Commission First Order and Report: Revision of Part 15 of the Commission's Rules Regarding UWB Transmission Systems." pp. 98–153, 2002.
- [2] J. Trajkovikj and A. K. Skrivervik, "Comparison of SAR of UHF wearable antennas," in 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1–4, doi: 10.1109/EuCAP.2016.7481220.
- [3] ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," vol. 74, pp. 492–522, 1999.
- P. S. Hall *et al.*, "Antennas and propagation for on-body communication systems," *IEEE Antennas Propag. Mag.*, vol. 49, no. 3, pp. 41–58, 2007, doi: 10.1109/MAP.2007.4293935.
- [5] A. Alemaryeen and S. Noghanian, "On-Body Low-Profile Textile Antenna With Artificial Magnetic Conductor," *IEEE Trans. Antennas Propag.*, vol. 67, no. 6, pp. 3649–3656, 2019, doi: 10.1109/TAP.2019.2902632.
- [6] G. Gao, B. Hu, S. Wang, and C. Yang, "Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network," *IEEE Antennas Wirel. Propag. Lett.*, vol. 17, no. 3, pp. 434–437, 2018, doi: 10.1109/LAWP.2018.2794061.
- [7] A. Alomainy, A. Sani, A. Rahman, J. G. Santas, and Y. Hao, "Transient Characteristics of Wearable Antennas and Radio Propagation Channels for Ultrawideband Body-Centric Wireless Communications," *IEEE Trans. Antennas Propag.*, vol. 57, no. 4, pp. 875–884, 2009, doi: 10.1109/TAP.2009.2014588.
- [8] H. Liu, C. Ku, T. Wang, and C. Yang, "Compact Monopole Antenna With Band-Notched Characteristic for UWB Applications," *IEEE Antennas Wirel. Propag. Lett.*, vol. 9, pp. 397–400, 2010, doi: 10.1109/LAWP.2010.2049633.
- [9] R. Chandel and A. K. Gautam, "Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristic," *Electron. Lett.*, vol. 52,

no. 5, pp. 336–338, 2016.

- [10] M. Bashiri, C. Ghobadi, J. Nourinia, and M. Majidzadeh, "WiMAX, WLAN, and X-Band Filtering Mechanism: Simple-Structured Triple-Band Frequency Selective Surface," *IEEE Antennas Wirel. Propag. Lett.*, vol. 16, pp. 3245– 3248, 2017, doi: 10.1109/LAWP.2017.2771265.
- [11] I. P. 1. W. G. for W. P. A. Network and TG6, "Body area networks," no. March. pp. 1–48, 2013.
- [12] L. Song and Y. Rahmat-Samii, "A Systematic Investigation of Rectangular Patch Antenna Bending Effects for Wearable Applications," *IEEE Trans. Antennas Propag.*, vol. 66, no. 5, pp. 2219–2228, 2018, doi: 10.1109/TAP.2018.2809469.
- [13] M. Mehranpour, J. Nourinia, C. Ghobadi, and M. Ojaroudi, "Dual Band-Notched Square Monopole Antenna for Ultrawideband Applications," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 172–175, 2012, doi: 10.1109/LAWP.2012.2186552.
- [14] R. Zaker, C. Ghobadi, and J. Nourinia, "Bandwidth Enhancement of Novel Compact Single and Dual Band-Notched Printed Monopole Antenna With a Pair of L-Shaped Slots," *IEEE Trans. Antennas Propag.*, vol. 57, no. 12, pp. 3978–3983, 2009, doi: 10.1109/TAP.2009.2023475.
- [15] Y. Jalil, C. Chakrabarty, and B. Kasi, A Compact Wideband Microstrip Antenna Intergrated with Band-Notched Design, vol. 77. 2012.
- [16] S. Habib, G. I. Kiani, and M. F. U. Butt, "An efficient UWB FSS for electromagnetic shielding," in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017, pp. 1543–1546, doi: 10.1109/ICEAA.2017.8065578.
- [17] M. Rashid, S. M. Shah, and A. Ponniran, "A Compact Triple-Notch Band Ultra-Wideband Antenna," *Univers. J. Electr. Electron. Eng.*, vol. 6, pp. 55–66, Dec. 2019, doi: 10.13189/ujeee.2019.061608.
- [18] S. Kingsly *et al.*, "Tunable Band-Notched High Selective UWB Filtering Monopole Antenna," *IEEE Trans. Antennas Propag.*, vol. 67, no. 8, pp. 5658– 5661, 2019.
- H. Xu and L. Yang, "Ultra-wideband technology: Yesterday, today, and tomorrow," in 2008 IEEE Radio and Wireless Symposium, 2008, pp. 715–718, doi: 10.1109/RWS.2008.4463592.

- [20] FCC, "Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems; ET Docket 98-153, FCC 02-48," 2002.
- [21] M. R. I. Faruque, M. T. Islam, and M. H. Ullah, "Biological effect of SAR on the human head due to variation of dielectric properties at 1800 and 2450 MHz with different antenna substrate materials," *Sci. Eng. Compos. Mater.*, vol. 22, no. 4, pp. 411–415, 2015, doi: doi:10.1515/secm-2013-0214.
- [22] Y. Song, J. Hu, N. Chu, T. Jin, J. Zhang, and Z. Zhou, "Building Layout Reconstruction in Concealed Human Target Sensing via UWB MIMO Through-Wall Imaging Radar," *IEEE Geosci. Remote Sens. Lett.*, vol. 15, no. 8, pp. 1199–1203, 2018, doi: 10.1109/LGRS.2018.2834501.
- [23] L. Flueratoru, S. Wehrli, M. Magno, E. S. Lohan, and D. Niculescu, "High-Accuracy Ranging and Localization with Ultra-Wideband Communications for Energy-Constrained Devices," *IEEE Internet Things J.*, p. 1, 2021, doi: 10.1109/JIOT.2021.3125256.
- [24] S. Subramanian, B. Sundarambal, and D. Nirmal, "Investigation on Simulation-Based Specific Absorption Rate in Ultra-Wideband Antenna for Breast Cancer Detection," *IEEE Sens. J.*, vol. 18, no. 24, pp. 10002–10009, 2018, doi: 10.1109/JSEN.2018.2875621.
- [25] D.-F. Lin, "Ultra wideband planar printed volcano antenna." Google Patents, Nov. 07, 2006.
- [26] P. Examiner and T. G. Phan, "Compact Antennas for Ultra-Wideband Applications," vol. 2, no. 12. Google Patents.
- [27] Ortega, "ULTRA-WIDEBAND ANTENNA HAVINGA BAND NOTCH CHARACTERISTIC," vol. 1, no. 19. Google Patents, pp. 1–5, 2010, [Online]. Available:
 https://patentimeges.starpag.googleanis.com/2b/a0/82/a282a7b24afe60/US201

https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US201 00019677A1.pdf.

- [28] P. H. James Kelly, "Band-notched wideband antenna." Google Patents, p. 26, 2010.
- [29] T. Matila, M. Kosamo, T. Patana, P. Jakkula, T. Hirvonen, and I. Oppermann,"UWB Antennas," UWB Theory Appl., pp. 129–156, 2004.
- [30] A. Abbas, N. Hussain, J. Lee, S. G. Park, and N. Kim, "Triple Rectangular Notch UWB Antenna Using EBG and SRR," *IEEE Access*, vol. 9, pp. 2508– 2515, 2021, doi: 10.1109/ACCESS.2020.3047401.

- [31] W. Su, "Ultra wideband signals and systems in communication engineering (Ghavami, M. et al.; 2007)[Book Review]," IEEE Signal Process. Mag., vol. 25, no. 5, pp. 122–123, 2008.
- T. Saeidi, I. Ismail, W. P. Wen, A. R. H. Alhawari, and A. Mohammadi, "Ultra-[32] Wideband Antennas for Wireless Communication Applications," Int. J. Antennas Propag., vol. 2019, p. 7918765, 2019, doi: 10.1155/2019/7918765.
- [33] W. S. Lee, D. Z. Kim, K. J. Kim, K. S. Son, W. G. Lim, and J. W. Yu, "Multiple frequency notched planar monopole antenna for multi-band wireless systems," in The European Conference on Wireless Technology, 2005., 2005, pp. 535-537, doi: 10.1109/ECWT.2005.1617775.
- [34] J. Powell, "Antenna design for ultra wideband radio." Massachusetts Institute of Technology, 2004.
- W. Zayd, A. Ismail, M. M. Isa, and S. Rahmatia, "Improved performance of [35] UWB antenna by substrate perforation and slit notch," in 2009 IEEE 9th AMINA Malaysia International Conference on Communications (MICC), 2009, pp. 33– 36, doi: 10.1109/MICC.2009.5431548.
- B. Lembrikov, Ultra Wideband. BoD-Books on Demand, 2010. [36]
- S. B. Roshni, S. Arun, M. T. Sebastian, P. Mohanan, and K. P. Surendran, "Low [37] κ Mg2SiO4 ceramic tapes and their role as screen printed microstrip patch antenna substrates," Mater. Sci. Eng. B, vol. 264, p. 114947, 2021, doi: https://doi.org/10.1016/j.mseb.2020.114947.
- Y. Ghazaoui, A. El Alami, M. El Ghzaoui, S. Das, D. Barad, and S. Mohapatra, [38] "Millimeter wave antenna with enhanced bandwidth for 5G wireless application," J. Instrum., vol. 15, no. 01, p. T01003, 2020, doi: 10.1088/1748-0221/15/01/T01003.
- [39] Ahmed Hafedh Nada, "Planar Ultra Wideband Antenna with Band Rejector," Universiti Teknologi Malaysia, 2020.
- L. Guo, M. Min, W. Che, and W. Yang, "A Novel Miniaturized Planar Ultra-[40] Wideband Antenna," IEEE Access, vol. 7, pp. 2769-2773, 2019, doi: 10.1109/ACCESS.2018.2886799.
- [41] X. Ding, Z. Zhao, Y. Yang, Z. Nie, and Q. H. Liu, "A Compact Unidirectional Ultra-Wideband Circularly Polarized Antenna Based on Crossed Tapered Slot Radiation Elements," IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7353-7358, 2018, doi: 10.1109/TAP.2018.2867059.

- [42] A. Omar and R. Shubair, "UWB coplanar waveguide-fed-coplanar strips spiral antenna," in 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016, pp. 1–2.
- [43] S. Sahoo, L. P. Mishra, M. N. Mohanty, and R. K. Mishra, "Design of compact UWB monopole planar antenna with modified partial ground plane," *Microw. Opt. Technol. Lett.*, vol. 60, no. 3, pp. 578–583, 2018.
- [44] L. RAY, "DESIGN OF ULTRA-WIDEBAND ANTENNAS WITH SIGNAL REJECTION CHARACTERISTICS FOR BIOMEDICAL APPLICATIONS," University of Alabama at Birmingham, 2015.
- [45] P. A. Catherwood and W. G. Scanlon, "Ultrawideband Communications—An Idea Whose Time has Still Yet to Come? [Wireless Corner]," *IEEE Antennas Propag. Mag.*, vol. 57, no. 2, pp. 38–43, 2015, doi: 10.1109/MAP.2015.2420013.
- [46] A. F. Molisch, "Ultra-Wide-Band Propagation Channels," *Proc. IEEE*, vol. 97, no. 2, pp. 353–371, 2009, doi: 10.1109/JPROC.2008.2008836.
- [47] B. Hammache, A. Messai, I. Messaoudene, and T. A. Denidni, "Compact stepped slot antenna for ultra-wideband applications," *Int. J. Microw. Wirel. Technol.*, pp. 1–7, 2021.
- [48] F. Guichi and M. Challal, "Ultra-wideband microstrip patch antenna design using a modified partial ground plane," in 2017 Seminar on Detection Systems Architectures and Technologies (DAT), 2017, pp. 1–6, doi: 10.1109/DAT.2017.7889178.
- [49] G. Srivastava and A. Mohan, "A planar UWB monopole antenna with dual band notched function," *Microw. Opt. Technol. Lett.*, vol. 57, no. 1, pp. 99–104, 2015.
- [50] M. Khorramizadeh and S. Mohammad-Ali-Nezhad, "Low-RCS feature for UWB antenna with band- notch characteristics," J. Electromagn. Waves Appl., Oct. 2020, doi: 10.1080/09205071.2020.1828188.
- [51] S. Baudha and M. V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," *Microw. Opt. Technol. Lett.*, vol. 61, no. 5, pp. 1320–1327, 2019, doi: 10.1002/mop.31716.
- [52] M. A. A. Rashid, S. M. Shah, H. A. Majid, A. Ponniran, and F. Hassan, "A Highly Miniaturized Ultra-Wideband Antenna with a Triple-Band Notch for

Wearable Applications," 2022.

- [53] Z. Hao and J. Hong, "Compact UWB Filter With Double Notch-Bands Using Multilayer LCP Technology," *IEEE Microw. Wirel. Components Lett.*, vol. 19, no. 8, pp. 500–502, 2009, doi: 10.1109/LMWC.2009.2024828.
- [54] A. Q. Kamil and A. K. Jassim, "Design ultra-wideband antenna have a band rejection desired to avoid interference from existing bands," *Bull. Electr. Eng. Informatics*, vol. 11, no. 2, pp. 886–892, 2022, doi: 10.11591/eei.v11i2.3164.
- [55] G. Yang, R. Jin, C. Vittoria, V. G. Harris, and N. X. Sun, "Small Ultra-Wideband (UWB) Bandpass Filter With Notched Band," *IEEE Microw. Wirel. Components Lett.*, vol. 18, no. 3, pp. 176–178, 2008, doi: 10.1109/LMWC.2008.916781.
- [56] M. El Ouahabi, A. Dkiouak, A. Zakriti, M. Essaaidi, and H. Elftouh, "Analysis and design of a compact ultra-wideband antenna with WLAN and X-band satellite notch," *Int. J. Electr. Comput. Eng.*, vol. 10, no. 4, pp. 4261–4269, 2020, doi: 10.11591/ijece.v10i4.pp4261-4269.
- [57] Y. Jalil, B. Kasi, C. Chakrabarty, and N. Radzi, "A Compact Rectangular Patch Ultra Wideband Antenna with WLAN and ITU Band Rejections," *Int. J. Eng. Technol.*, vol. 7, pp. 1424–1431, Aug. 2015.
- [58] H. G. Schantz, G. Wolenec, and E. M. Myszka, "Frequency notched UWB antennas," in *IEEE Conference on Ultra Wideband Systems and Technologies*, 2003, 2003, pp. 214–218, doi: 10.1109/UWBST.2003.1267835.
- [59] Y. Li et al., "A Novel Low-Power Notch-Enhanced Active Filter for Ultrawideband Interferer Rejected LNA," *IEEE Trans. Microw. Theory Tech.*, vol. 69, no. 3, pp. 1684–1697, 2021, doi: 10.1109/TMTT.2021.3053264.
- [60] J. Xu, D.-Y. Shen, G.-T. Wang, X.-H. Zhang, X.-P. Zhang, and K. Wu, "A Small UWB Antenna with Dual Band-Notched Characteristics," *Int. J. Antennas Propag.*, vol. 2012, p. 656858, 2012, doi: 10.1155/2012/656858.
- [61] P. P. Shome, T. Khan, and R. H. Laskar, "A state-of-art review on band-notch characteristics in UWB antennas," *Int. J. RF Microw. Comput. Eng.*, vol. 29, no. 2, p. e21518, 2019.
- [62] D. Guha and Y. M. M. Antar, *Microstrip and printed antennas: new trends, techniques and applications*. John Wiley & Sons, 2011.
- [63] W. Balani *et al.*, "Design of SWB antenna with triple band notch characteristics for multipurpose wireless applications," *Appl. Sci.*, vol. 11, no. 2, p. 711, 2021.

- [64] H. Hosseini, H. R. Hassani, and M. H. Amini, "Miniaturised multiple notched omnidirectional UWB monopole antenna," *Electron. Lett.*, vol. 54, no. 8, pp. 472–474, 2018.
- [65] M. Sharma, "RETRACTED ARTICLE: Superwideband Triple Notch Monopole Antenna for Multiple Wireless Applications," *Wirel. Pers. Commun.*, vol. 104, no. 1, pp. 459–470, 2019, doi: 10.1007/s11277-018-6030-9.
- [66] V. Dhasarathan, M. Sharma, M. Kapil, P. C. Vashist, S. K. Patel, and T. K. Nguyen, "Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications," *Wirel. Networks*, vol. 26, no. 4, pp. 2845–2855, 2020, doi: 10.1007/s11276-019-02230-0.
- [67] P. Gao, S. He, X. Wei, Z. Xu, N. Wang, and Y. Zheng, "Compact Printed UWB Diversity Slot Antenna With 5.5-GHz Band-Notched Characteristics," *IEEE Antennas Wirel. Propag. Lett.*, vol. 13, pp. 376–379, 2014, doi: 10.1109/LAWP.2014.2305772.
- [68] A. D. Yaghjian and S. R. Best, "Impedance, bandwidth, and Q of antennas," *IEEE Trans. Antennas Propag.*, vol. 53, no. 4, pp. 1298–1324, 2005.
- [69] G. Singh and U. Singh, "Triple-step feed line-based compact ultra-wideband antenna with quadruple band-notch characteristics," *Int. J. Electron.*, vol. 109, no. 2, pp. 271–292, 2022.
- [70] H. S. Mewara, J. K. Deegwal, and M. M. Sharma, "A slot resonators based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna," *AEU - Int. J. Electron. Commun.*, vol. 83, pp. 470–478, 2018, doi: https://doi.org/10.1016/j.aeue.2017.10.035.
- [71] M. O. Al-Dwairi, "A planar UWB semicircular-shaped monopole antenna with quadruple band notch for WiMAX, ARN, WLAN, and X-Band," *Int. J. Electr. Comput. Eng.*, vol. 10, no. 1, p. 908, 2020.
- [72] B. Hammache, A. Messai, I. Messaoudene, and T. A. Denidni, "A compact ultra-wideband antenna with three C-shaped slots for notched band characteristics," *Microw. Opt. Technol. Lett.*, vol. 61, no. 1, pp. 275–279, 2019.
- [73] S. Modak, T. Khan, and R. H. Laskar, "Penta-band notched ultra-wideband monopole antenna loaded with electromagnetic bandgap-structures and modified U-shaped slots," *Int. J. RF Microw. Comput. Eng.*, vol. 29, no. 12, p. e21963, 2019.

- [74] J. Ghimire and D.-Y. Choi, "Design of a compact ultrawideband U-shaped slot etched on a circular patch antenna with notch band characteristics for ultrawideband applications," *Int. J. Antennas Propag.*, vol. 2019, 2019.
- [75] X. Lin, Y. Chen, Z. Gong, B.-C. Seet, L. Huang, and Y. Lu, "Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications," *IEEE Trans. Antennas Propag.*, vol. 68, no. 6, pp. 4238–4249, 2020, doi: 10.1109/TAP.2020.2970072.
- [76] M. Särestöniemi, C. Pomalaza-Ráez, C. Kissi, M. Berg, M. Hämäläinen, and J. Iinatti, "WBAN Channel Characteristics Between Capsule Endoscope and Receiving Directive UWB On-Body Antennas," *IEEE Access*, vol. 8, pp. 55953–55968, 2020, doi: 10.1109/ACCESS.2020.2982247.
- [77] R. Bharadwaj and S. K. Koul, "On-Body UWB Channel Classification and Characterization for Various Physical Exercises," *IEEE Access*, vol. 9, pp. 126256–126264, 2021, doi: 10.1109/ACCESS.2021.3110715.
- [78] Z. A. Dayo, Q. Cao, Y. Wang, S. U. Rahman, and P. Soothar, "A compact broadband antenna for civil and military wireless communication applications," *Editor. Pref. From Desk Manag. Ed.*, vol. 10, no. 9, 2019.
- [79] R. Setia, "Wearable Device with Ultra-Wideband Technology Enable Users to Maintain Safe Social Distance," 2020. https://circuitdigest.com/news/wearabledevice-ultra-wideband-technology-enable-users-to-maintain-safe-socialdistance.
- [80] K. Fielf, "COVID-19: A wearable warns when you're less than six feet _ Fierce Electronics," 2020. https://www.fierceelectronics.com/sensors/covid-19-awearable-warns-when-you-re-less-than-six-feet.
- [81] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, "Wearable Ultrawideband Technology—A Review of Ultrawideband Antennas, Propagation Channels, and Applications in Wireless Body Area Networks," *IEEE Access*, vol. 6, pp. 42177–42185, 2018.
- [82] F. C. Seman *et al.*, "Performance evaluation of a star-shaped patch antenna on polyimide film under various bending conditions for wearable applications," *Prog. Electromagn. Res. Lett.*, vol. 85, pp. 125–130, 2019.
- [83] P. Salonen, Y. Rahmat-Samii, M. Schaffrath, and M. Kivikoski, "Effect of textile materials on wearable antenna performance: a case study of GPS antennas," in *IEEE Antennas and Propagation Society Symposium*, 2004., 2004,

vol. 1, pp. 459-462 Vol.1, doi: 10.1109/APS.2004.1329673.

- [84] M. Munde, A. Nandgaonkar, and S. Deosarkar, "Low specific absorption rate antenna using electromagnetic band gap structure for long term evolution band 3 application," *Prog. Electromagn. Res. M*, vol. 80, pp. 23–34, 2019.
- [85] I. C. on N.-I. R. Protection, "ICNIRP GUIDELINES FOR LIMITING EXPOSURE TO TIME - VARYING GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING." Health Physics 99(6):818-836, 2010, doi: 10.1097/HP.0b013e3181f06c86.
- [86] J. C. Lin, "FCC Announces Its Existing RF Exposure Limits Apply to 5G [Health Matters]," *IEEE Microw. Mag.*, vol. 21, no. 4, pp. 15–17, 2020.
- [87] M. Susila, T. R. Rao, K. Varshini, P. S. Kumar, and M. Pushpalatha, "Investigations of specific absorption rate and temperature variations for an UWB antenna for wireless applications," *Prog. Electromagn. Res. M*, vol. 78, pp. 83–92, 2019.
- [88] ROGERS corporation, "RO3000[®] Series Circuit Materials," RO3010, ROGERS corporation, USA. 2017.
- [89] W. M. Hassan, A. A. R. Saad, and A. A. Ibrahim, "Ultra-wide band flexible antenna applicable for dual-band on-body communications," *Int. J. Microw. Wirel. Technol.*, pp. 1–14, 2022, doi: DOI: 10.1017/S1759078722000514.
- [90] A. K. S. Yadav, M. D. Sharma, N. Saxena, and R. Sharma, "Wearable Antennas for Biomedical Applications," *Wearable Neuronic Antennas Med. Wirel. Appl.*, pp. 217–248, 2022.
- [91] H. Srivastava, A. Singh, A. Rajeev, and U. Tiwari, "Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) using slotted array technique," *Wirel. Pers. Commun.*, vol. 114, pp. 699–709, 2020.
- [92] R. K. Verma and D. K. Srivastava, "Bandwidth enhancement of a slot loaded T-shape patch antenna," *J. Comput. Electron.*, vol. 18, pp. 205–210, 2019.
- [93] M. Khan, "Design and Analysis of A Compact UWB Band Notch Antenna for Wireless Communication," *Eng. Proc.*, vol. 3, p. 6, Oct. 2020, doi: 10.3390/IEC2020-06974.
- [94] B. Mohamadzade, R. B. V. B. Simorangkir, R. M. Hashmi, Y. Chao-Oger, M. Zhadobov, and R. Sauleau, "A Conformal Band-Notched Ultrawideband Antenna With Monopole-Like Radiation Characteristics," *IEEE Antennas Wirel. Propag. Lett.*, vol. 19, no. 1, pp. 203–207, 2020, doi:

10.1109/LAWP.2019.2958036.

- [95] S. Doddipalli and A. Kothari, "Compact UWB Antenna With Integrated Triple Notch Bands for WBAN Applications," *IEEE Access*, vol. 7, pp. 183–190, 2019.
- [96] W. Xiao, M. Tengda, Y. Lan, Y. Wu, xu ruimin, and Y. Xu, "Triple bandnotched UWB monopole antenna on ultra-thin liquid crystal polymer based on ESCSRR," *Electron. Lett.*, vol. 53, Nov. 2016, doi: 10.1049/el.2016.3807.
- [97] P. Sopa and P. Rakluea, "The Hexagonal Shaped UWB Wearable Textile Antenna with Band-Notched Characteristics," in 2020 8th International Electrical Engineering Congress (iEECON), 2020, pp. 1–4, doi: 10.1109/iEECON48109.2020.229463.
- [98] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.
- [99] E. Pancera, J. Timmermann, T. Zwick, and W. Wiesbeck, *Time domain analysis* of band notch UWB antennas. 2009.
- [100] D. Chaturvedi and S. Raghavan, "Circular quarter-mode SIW antenna for WBAN application," *IETE J. Res.*, vol. 64, no. 4, pp. 482–488, 2018.
- [101] U. Ali *et al.*, "Design and SAR analysis of wearable antenna on various parts of human body, using conventional and artificial ground planes," *J. Electr. Eng. Technol.*, vol. 12, no. 1, pp. 317–328, 2017.
- [102] Z. H. Jiang and D. H. Werner, "Robust low-profile metasurface-enabled wearable antennas for off-body communications," in *The 8th European Conference on Antennas and Propagation (EuCAP 2014)*, 2014, pp. 21–24.
- [103] M. Koohestani, J.-F. Zürcher, A. A. Moreira, and A. K. Skrivervik, "A novel, low-profile, vertically-polarized UWB antenna for WBAN," *IEEE Trans. Antennas Propag.*, vol. 62, no. 4, pp. 1888–1894, 2014.
- [104] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band magnetoelectric dipole antenna for WBAN/WLAN applications," *IEEE Trans. Antennas Propag.*, vol. 63, no. 9, pp. 4165–4169, 2015.
- [105] A. Y. I. Ashyap *et al.*, "An overview of electromagnetic band-gap integrated wearable antennas," *IEEE Access*, vol. 8, pp. 7641–7658, 2020.
- [106] D. T. Nguyen, D. H. Lee, and H. C. Park, "Very Compact Printed Triple Band-Notched UWB Antenna With Quarter-Wavelength Slots," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 411–414, 2012, doi: 10.1109/LAWP.2012.2192900.

- [107] U. Rafique, S. Pisa, R. Cicchetti, O. Testa, and M. Cavagnaro, "Ultra-Wideband Antennas for Biomedical Imaging Applications: A Survey," *Sensors*, vol. 22, no. 9. 2022, doi: 10.3390/s22093230.
- [108] R. K. Garg, M. V. D. Nair, S. Singhal, and R. Tomar, "A miniaturized ultrawideband antenna using 'modified' rectangular patch with rejection in WiMAX and WLAN bands," *Microw. Opt. Technol. Lett.*, vol. 63, no. 4, pp. 1271–1277, 2021.
- [109] A. Abbas, N. Hussain, J. Lee, S. G. Park, and N. Kim, "Triple rectangular notch UWB antenna using EBG and SRR," *IEEE Access*, vol. 9, pp. 2508–2515, 2020.
- [110] V. S. D. Rekha, P. Pardhasaradhi, B. T. P. Madhav, and Y. U. Devi, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," *IEEE Access*, vol. 8, pp. 145871–145880, 2020.
- [111] S. Park and K.-Y. Jung, "Novel Compact UWB Planar Monopole Antenna Using a Ribbon-Shaped Slot," *IEEE Access*, vol. 10, pp. 61951–61959, 2022.
- [112] M. M. Khan and A. Sultana, "Novel and compact ultra-wideband wearable band-notch antenna design for body sensor networks and mobile healthcare system," *Eng. Proc.*, vol. 3, no. 1, p. 1, 2020.
- [113] S. N. Mahmood *et al.*, "Full ground ultra-wideband wearable textile antenna for breast cancer and wireless body area network applications," *Micromachines*, vol. 12, no. 3, p. 322, 2021.
- [114] Hemachandra Reddy Gorla, "Miniaturized Ultra-Wideband Antennas for Wireless Communications," Southern Illinois University Carbondale, 2021.
- [115] A. Y. I. Ashyap *et al.*, "Inverted E-Shaped Wearable Textile Antenna for Medical Applications," *IEEE Access*, vol. 6, pp. 35214–35222, 2018, doi: 10.1109/ACCESS.2018.2847280.
- [116] H. Medkour, M. Cheniti, A. Narbudowicz, S. Das, E. Vandelle, and T. P. Vuong, "Coplanar waveguide-based ultra-wide band antenna with switchable filtering of WiMAX 3.5 GHz and WLAN 5 GHz signals," *Microw. Opt. Technol. Lett.*, vol. 62, no. 6, pp. 2398–2404, 2020.
- [117] M. C. and M. Commission, "Guideline on the Provision of Wireless Local Area Network (Wlan) Service." pp. 1–15, 2013.
- [118] Y. J. Cho, K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," *IEEE Trans. Antennas Propag.*, vol. 54, no. 5, pp. 1453–1460,

2006, doi: 10.1109/TAP.2006.874354.

- [119] Z. Tang, X. Wu, J. Zhan, S. Hu, Z. Xi, and Y. Liu, "Compact UWB-MIMO Antenna With High Isolation and Triple Band-Notched Characteristics," *IEEE Access*, vol. 7, pp. 19856–19865, 2019, doi: 10.1109/ACCESS.2019.2897170.
- [120] B. Yin, J. Gu, X. Feng, B. Wang, Y. Yu, and W. Ruan, "A low SAR value wearable antenna for wireless body area network based on AMC structure," *Prog. Electromagn. Res. C*, vol. 95, pp. 119–129, 2019.
- [121] M. A. Jamlos, M. F. Jamlos, S. Khatun, and A. H. Ismail, "An optimum quarter-wave impedance matching feedline for circular UWB array antenna with high gain performance," in 2014 IEEE Symposium on Wireless Technology and Applications (ISWTA), 2014, pp. 165–169, doi: 10.1109/ISWTA.2014.6981180.
- [122] D. Yang, J. Hu, and S. Liu, "A Low Profile UWB Antenna for WBAN Applications," *IEEE Access*, vol. 6, pp. 25214–25219, 2018.
- [123] C. Rong, W. Xiao, Y. Xu, and M.-Y. Xia, "A double band-notched UWB antenna for flexible RF electronics," *Appl. Comput. Electromagn. Soc. J.*, vol. 32, pp. 413–417, May 2017.
- [124] A. Majeed and K. Sayidmarie, "UWB elliptical patch monopole antenna with dual-band notched characteristics," *Int. J. Electr. Comput. Eng.*, vol. 9, pp. 3591–3598, Oct. 2019.
- [125] Z. Yao, S. Xiao, Y. Li, and B.-Z. Wang, "Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers," *IEEE Trans. Antennas Propag.*, vol. 70, no. 8, pp. 7276–7281, 2022.
- [126] D. Sarkar, K. V Srivastava, and K. Saurav, "A Compact Microstrip-Fed Triple Band-Notched UWB Monopole Antenna," *IEEE Antennas Wirel. Propag. Lett.*, vol. 13, pp. 396–399, 2014, doi: 10.1109/LAWP.2014.2306812.
- [127] Y. Zhang, W. Hong, C. Yu, Z.-Q. Kuai, Y.-D. Don, and J.-Y. Zhou, "Planar Ultrawideband Antennas With Multiple Notched Bands Based on Etched Slots on the Patch and/or Split Ring Resonators on the Feed Line," *IEEE Trans. Antennas Propag.*, vol. 56, no. 9, pp. 3063–3068, 2008, doi: 10.1109/TAP.2008.928815.
- [128] M. Ur-Rehman, Q. H. Abbasi, M. Akram, and C. Parini, "Design of bandnotched ultra wideband antenna for indoor and wearable wireless communications," *IET Microwaves, Antennas Propag.*, vol. 9, no. 3, pp. 243–

251, 2015, doi: 10.1049/iet-map.2014.0378.

- [129] A. K. Gautam, S. Yadav, and B. K. Kanaujia, "A CPW-Fed Compact UWB Microstrip Antenna," *IEEE Antennas Wirel. Propag. Lett.*, vol. 12, pp. 151– 154, 2013, doi: 10.1109/LAWP.2013.2244055.
- [130] Y. Li and K.-M. Luk, "60-GHz substrate integrated waveguide fed cavitybacked aperture-coupled microstrip patch antenna arrays," *IEEE Trans. Antennas Propag.*, vol. 63, no. 3, pp. 1075–1085, 2015.
- [131] Q. Chu and Y. Yang, "A Compact Ultrawideband Antenna With 3.4/5.5 GHz Dual Band-Notched Characteristics," *IEEE Trans. Antennas Propag.*, vol. 56, no. 12, pp. 3637–3644, 2008, doi: 10.1109/TAP.2008.2007368.
- [132] X. Guan *et al.*, "Novel ultra-wideband antenna with dual-band rejection characteristic for wearable applications," in 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (*iWEM*), 2016, pp. 1–3, doi: 10.1109/iWEM.2016.7505006.
- [133] S. J. Chen, T. Kaufmann, D. C. Ranasinghe, and C. Fumeaux, "A modular textile antenna design using snap-on buttons for wearable applications," *IEEE Trans. Antennas Propag.*, vol. 64, no. 3, pp. 894–903, 2016.
- [134] Q. Abbasi, M. Ur Rehman, X. Yang, A. Alomainy, K. Qaraqe, and E. Serpedin,
 "Ultrawideband Band-Notched Flexible Antenna for Wearable Applications," *Antennas Wirel. Propag. Lett. IEEE*, vol. 12, pp. 1606–1609, Dec. 2013, doi: 10.1109/LAWP.2013.2294214.
- [135] A. Y. I. Ashyap *et al.*, "Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications," *IEEE Access*, vol. 9, pp. 6948–6960, 2021, doi: 10.1109/ACCESS.2021.3049491.

APPENDIX F

VITA

The author was born on January 27, 1995, in Perak, Malaysia. She attended high school studies at Sekolah Menengah Hulu Selangor, Selangor in 2007 till 2012. She graduated with a bachelor's degree of Electrical Engineering with Honours from Universiti Tun Hussein Onn, Malaysia (UTHM) in 2018, and currently working on her Master's degree of Electrical and Electronic Engineering in Faculty of Electrical and Electronic Engineering (FKEE).