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ABSTRACT

Over the years, numerous studies have been conducted on the integration of

computer vision-based feature descriptors and machine learning classifiers for crop

disease identification to help farm owners who need assistance in monitoring crop

health. However, these conventional feature descriptors often require manual

extraction of various disease features. Improperly extracting disease features that are

discriminative from the crop can jeopardise the identification performance of the

classifiers. To overcome the limitation of these descriptors, a deep convolutional

feature descriptor, namely Convolutional Neural Network (CNN), is implemented in

this research for chilli leaf image-based disease identification. Three CNN-based

models, namely DenseNet-201, EfficientNet-b0, and NasNet-Mobile, are used in this

research. Healthy and diseased chilli leaf images are collected and have their

resolution resized prior to the model training. The modified model version of

DenseNet-201, EfficientNet-b0, and NasNet-Mobile are also built, with the

classification layer of each model (softmax-based) is replaced by a Support Vector

Machine (SVM) based layer. The identification performance of DenseNet-201

(softmax-based), EfficientNet-b0 (softmax-based), and NasNet-Mobile (softmax-

based) are compared with their modified variants, namely DenseNet-201 (SVM-

based), EfficientNet-b0 (SVM-based), and NasNet-Mobile (SVM-based). It is found

that the EfficientNet-b0 (SVM-based) model has outperformed the rest of the models

with the highest identification performance, where the performance index of

accuracy, recall, specificity, precision, and F1-score being 97.33%, 0.97, 0.94, 0.95,

and 0.96, respectively. Additionally, a chilli leaf image-based disease identification

system in the form of MatlabTM Graphical User Interface (GUI) with captured image

input and identification result terminal has been developed in the research to assist

farm owners and non-chilli experts in identifying chilli diseases. The EfficientNet-b0

(SVM-based) model is deployed as the core of the developed GUI.
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ABSTRAK

Selama bertahun-tahun, pelbagai kajian mengenai integrasi pintu deskriptor

berasaskan penglihatan komputer serta mesin pengelas pengenalpastian untuk

pengecaman penyakit tanaman telah dilakukan bagi membantu pemilik ladang untuk

memantau kesihatan tanaman. Walau bagaimanapun, pintu deskriptor yang

konvensional ini selalunya memerlukan pengekstrakan ciri penyakit secara manual

daripada tanaman. Pengekstrakan ciri penyakit secara tidak betul daripada tanaman

boleh menjejaskan prestasi mesin pengelas pengenalpastian. Untuk mengatasi had

deskriptor tersebut, pintu deskriptor berasaskan konvolusi yang mendalam, iaitu

Konvolusi Rangkaian Neural (CNN), telah dilaksanakan dalam penyelidikan ini

untuk pengenalpastian penyakit berasaskan imej daun cili. Tiga model berasaskan

CNN, khususnya, DenseNet-201, EfficientNet-b0 dan NasNet-Mobile, telah

digunakan dalam penyelidikan ini. Imej daun cili yang sihat dan berpenyakit telah

dikumpulkan dan resolusi imej-imej tersebut diubah saiznya sebelum model-model

tersebut dilatih. Versi model ubahsuai DenseNet-201, EfficientNet-b0 dan NasNet-

Mobile juga dibina, dengan lapisan pengelasan setiap model (berasaskan softmax)

digantikan dengan lapisan pengelasan berasaskan Mesin Sokongan Vektor (SVM).

Perbandingan prestasi pengenalpastian telah dibuat antara DenseNet-201 (berasaskan

softmax), EfficientNet-b0 (berasaskan softmax) dan NasNet-Mobile (berasaskan

softmax). Perbandingan tersebut juga melibatkan versi model ubahsuai, iaitu

DenseNet-201 (berasaskan SVM), EfficientNet-b0 (berasaskan SVM), dan NasNet-

Mobile (berasaskan SVM). Didapati bahawa prestasi pengenalpastian daripada

model EfficientNet-b0 (berasaskan SVM) telah mengatasi model-model yang lain

dengan indeks ketepatan, ingatan semula, kekhususan, keperincian dan skor F1 pada

97.33%, 0.97, 0.94, 0.95 dan 0.96. Bagi memudahkan pemilik ladang dan orang

bukan pakar hal cili untuk mengenal pasti penyakit cili, sistem pengenalan penyakit

berasaskan imej daun cili dalam bentuk Antaramuka Pengguna Grafik (GUI)

MatlabTM telah dibangunkan dalam penyelidikan ini. Model EfficientNet-b0

(berasaskan SVM) telah digunakan sebagai teras GUI tersebut.
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CHAPTER 1

INTRODUCTION

This chapter commences with a discussion of the environment for chilli cultivation in

Malaysia and the difficulties in ensuring the health of the crop at all times. The

difficulties encountered prompt this research to investigate an alternative approach

for identifying diseases of the crop in order to monitor its health using a

Convolutional Neural Network (CNN) method.

1.1 Background of research

Chilli (Capsicum spp.), an agricultural crop whose fruits are used as a spice in

cooking, was introduced in Melaka, Malaysia in the early 1511s [1]. The crop grows

upright and entrenched, with a branching green stem and light green to dark green

oval leaves. The flower of the crop has five white petals that emerge from the

branches with an elongated, and tapered red fruit. The crop belongs to the Solanaceae

family; there are about 27 species, but the five best known are C. annuum, C.

frutescens, C. pubescens, C. chinense, and C. baccatum [2]. C. annum (varieties CB2,

CB3, CB4, CB6, MC11, MC12, and Kulai) is the most popular among locals, with

the Kulai variety being widely grown by Malaysian farmers owing to the economic

value of its fruits [3]. Nevertheless, chilli production in Malaysia has declined

significantly since 2013, as shown in the chart of Figure 1.1. A similar trend is also

observed in chilli farming area, as shown in the chart of Figure 1.2. These charts

demonstrate that although chilli has significant economic value, export remains a

major challenge in both the domestic and international sectors.
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Figure 1.1: Malaysia chilli production from period 2013-2020 [4, 5]

Figure 1.2: Malaysia chilli farming area from period 2013-2020 [4, 5]

With a diverse biodiversity of micro-organisms and high rainfall frequency

throughout the year, the agricultural climate in Malaysia results in high air and soil

humidity in crop farming areas. Chilli nutrition absorption, like other agricultural

crops, is hampered by diseases induced by the resulting climate and pathogen-related

infection [6]. These diseases can prohibit significant production of chilli for export [7,

8]. Subsequently, the diseases can be categorised depending on the morphological

symptoms that appear on the crop, such as root, stem, flower, fruit, or leaf. However,
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it is reported that more than 60% of diseases affecting agricultural crops are simply

found on the leaf [9-11]. Table 1.1 to Table 1.3 describes the locations of various

morphological symptoms of chilli diseases, which are found on the root, fruit, and

leaf.

Table 1.1: Morphological symptoms of chilli disease found on the root

Location Disease Symptoms Sample Ref.

Root Root-knot The formation of
swollen spherical
regions, also
known as root
galls, can be
observed
throughout an
infected root
system. The
pathogen
responsible is
Meloidogyne
incognita.

[12]

Damping-off The development
of brown and
moist lesions on
the roots, which
results in stunted
growth. The
pathogens
responsible are
Pythium spp.,
Fusarium spp.,
and Sclerotinia
spp.

[13]

Root Rot The changes of
young crop roots
from firm and
white to black or
brown and mushy
are due to the
pathogen
Rhizoctonia
solani.

[14]
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Table 1.2: Morphological symptoms of chilli disease found on the fruit

Location Disease Symptoms Sample Ref.

Fruit Fruit Rot Small, black,
round lesions
primarily occur
on the fruits. The
pathogens
responsible are
Colletotrichum
truncatum,
Colletotrichum
gleosporoides,
and
Colletotrichum
acutatum.

[15]

Bacterial
Soft Rot

The formation of
water-soaked
lesions that
quickly spread
and cause fruits to
degenerate,
resulting in a
slimy and foul-
smelling mess.
The pathogen
responsible is
Erwinia
carotovora.

[16]

Phytophthora
Blight

Infected fruit
pods start
shriveling and
decaying, and
white mold grows
within the pod.
Once inside the
fruit, the
pathogen infects
the seeds. The
pathogen
responsible is
Phytophthora
capsici.

[17]
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Table 1.3: Morphological symptoms of chilli disease found on the leaf

Location Disease Symptoms Sample Ref.

Leaf Bacterial
Leaf Spot

The presence of
small, dark
brown, round
spots is observed.
The tissue in the
center of the spots
becomes lighter
and is surrounded
by darker borders
as the size of the
spots increases.
The pathogen
responsible is
Xanthomonas
campestris pv.
vesicatoria.

[18]

Powdery
Mildew

On the undersides
of leaf surfaces,
light green spots
of growth appear.
Over time, the
affected regions
gather and result
in the overall
whitening of the
leaf. The
pathogen
responsible is
Leveillula taurica.

[19]

Cucumber
Mosaic

Development of
necrotic spots,
and irregular
patterns on the
leaf surface.
Eventually, the
leaf twists and
curls. The
pathogens
responsible are
the Cucumber
Mosaic Virus and
Potato Virus Y.

[20]
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By identifying symptoms of chilli diseases, targeted disease controls can be

triggered, where disease can be treated, and even the prevention of disease outbreaks.

Subsequently, disease prevention measures such as pruning and pesticide

deployment schedules, harvest timing, and farm drainage system design can be

carried out before further chilli health degradation occurs. These measures have the

potential to boost Malaysia chilli export industry in two ways. The first is an increase

in chilli yield for exportation or a reduction in yield loss to guarantee domestic food

security for spices. The second is an increase in the efficacy of phytosanitary

treatments so that less chilli is irradiated when exported. To achieve these goals, this

research concentrates on developing a chilli leaf image-based disease identification

system using a CNN method. The system is intended to assist farm owners and

individuals who are not chilli experts in monitoring chilli health, which can be

healthy or diseased depending on the disease symptom.

1.2 Problem statement

Due to the climate characteristics of high ambient humidity and diverse insect

biodiversity, the health level of chilli is unpredictable, resulting in varying chilli

yield and quality. The inability of farm owners to identify unusual signs of chilli

health and take precautionary measures against chilli diseases is hampered by the

lack of technology-based inspection equipment and proper disease identification

standards set by qualified crop pathologists [9]. In addition, the massive importation

of cheap foreign labour with varying levels of work experience to farms makes it

difficult for farm owners or labour agents to provide job-related technical training [8],

let alone disease identification, which requires decades of experience.

Conventionally, the chilli health is determined manually by naked eye inspection or

by laboratory testing for detailed analysis [9]. The commonly practised procedure for

monitoring chilli health is laborious and time-consuming. At times, the laborious

procedure is also prone to error as it is done by humans.

As a result, daily monitoring of chilli health using manual methods is less

efficient for farming operations. However, farm owners can benefit from modern

practices available for monitoring chilli health, such as the use of computer vision-

based feature descriptors. Several studies have been conducted on the integration of

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



7

computer vision-based feature descriptors and machine learning classifiers to identify

diseases from chilli leaf images over the years, such as Gray Level Co-occurrence

Matrix (GLCM) [21], Histograms Oriented Gradient (HOG) [22], and Scale-

Invariant Feature Transform (SIFT) [23]. Although these conventional feature

descriptors have shown promising results, they often rely heavily on the correct

selection of manually extracted disease features. Improperly extracting disease

features that are discriminative from the crop can jeopardise the identification

performance of the classifiers [22].

In this regard, a deep convolutional feature descriptor, specifically the CNN,

has made a promising achievement. The CNN can learn and extract the low-level and

high-level features necessary for classification, thereby eliminating the need for

manual feature extraction [24].

1.3 Aim

This research aims to overcome the limitation of conventional feature

descriptors described in Section 1.2 by using a deep convolutional feature descriptor,

namely the CNN, to identify diseased chilli leaf. At the end of this research, a chilli

leaf image-based disease identification system in the form of MatlabTM Graphical

User Interface (GUI) with captured image input and identification result terminal is

built in order to assist farm owners and non-chilli experts for disease identification

purposes. The CNN with the highest identification performance is selected and

deployed as the core of the built GUI.

1.4 Objectives

The objectives of this research are as follows:

i. To identify chilli leaf diseases using three pretrained CNN-based models with

their softmax-based layers.

ii. To modify CNN-based models using the SVM-based layers in order to

identify chilli leaf diseases.
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iii. To compare the performance of pretrained and modified CNN-based models

in terms of identification performance.

1.5 Scopes of research

The scopes of the research are:

i. This research uses chilli leaf datasets from Kaggle, a public image dataset

website. There are 3000 images of chilli leaf in the datasets, both healthy and

diseased. The first 1000 images are in the category of healthy, the next 1000

images are in the category of Bacterial Leaf Spot disease, and the last 1000

images are in the category of Powdery Mildew disease.

ii. DenseNet-201, EfficientNet-b0, and NasNet-Mobile are the three pretrained

CNN-based models utilised to identify healthy and diseased chilli leaf,

whereas the classification layer of these models (softmax-based) is used for

feature classification.

iii. The modification of the CNN-based model is performed at the classification

layer of each pretrained CNN-based model by replacing the softmax-based

with SVM-based for the feature classification task. The modified CNN-based

models are namely DenseNet-201 (SVM-based), EfficientNet-b0 (SVM-

based), and NasNet-Mobile (SVM-based).

iv. All CNN-based models are trained using 2100 images, and the remaining 900

images are used to test the models. The output of these models is their

identification performance. In order to measure their identification

performance, five performance indexes are computed from the confusion

matrix generated from a model testing result that are accuracy, recall,

specificity, precision as well as F1-score.

v. The model with the highest identification performance is integrated into the

development of a GUI-based chilli leaf-image disease identification system.
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