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ABSTRACT  

Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging 

technology in brain-computer interface (BCI) applications. Poor signal quality and 

massive irrelevant signals are the shared challenges of fNIRS signal post-processing 

in real-life. Principal component analysis (PCA) and partial least squares (PLS) 

extracted principal components (PCs) and latent variables (LVs) are the practical 

feature extractors in near-infrared chemometric analysis, but both features were rarely 

studied for fNIRS-BCI application. Thus, this study investigates the feasibility of PCs 

and LVs as the signal features in fNIRS-BCI model development. First, fNIRS signals 

were analysed using different signal denoise filters, channel compressions, and feature 

extraction approaches to produce optimal PCs and LVs features. Next, both features 

were applied as ANN training inputs to produce PCs-ANN and LVs-ANN in 10-folds 

cross-validation for fNIRS-BCI applications. The PCs-ANN outperformed benchmark 

statistical approach literature with average classification accuracy of 71.67% in four 

class classification. The optimal LVs-ANN outperformed partial least square 

discriminant (PLS-DA) and traceable best-performed literature of bagging classifiers. 

The classification accuracies of LVs-ANN, PLS-DA, and the bagging classifier were 

84.94%, 77.05%, and 74.00%, respectively, in binary classification. Findings show the 

PLS is effective in eliminating less relevant training features to improve fNIRS-BCI 

performance. In conclusion, this study validated the feasibility of PCA and PLS feature 

extractors by demonstrating reliable performance for fully imagine tasks-based fNIRS-

BCI applications, including hand motion imagine and word generation. This 

demonstrates that both feature extractors were essential to the development of the 

fNIRS-BCI device for patients with total paralysis.
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ABSTRAK 

“Functional near-infrared spectroscopy (fNIRS)” merupakan teknologi pemeriksaan 

aktiviti otak tanpa kerosakan dalam aplikasi “Brain-computer interface (BCI)”. 

Namun, kualiti sinaran “fNIRS” adalah sensitif terhadap pergerakan badan pengguna 

serta memberikan impak yang ketara terhadap ketepatan “BCI”. Menurut kajian lepas, 

isu tersebut dapat diperbaiki melalui pemilihan algoritma ekstrak ciri-ciri sinaran 

aktiviti otak yang efektif. Manakala, “Principal components (PCs)” dan “Latent 

variables (LVs)” merupakan hasil-hasil mampatan “Principal component analysis 

(PCA)” dan “Partial least squares (PLS)”, kedua-dua ciri-ciri sinar adalah efektif 

dalam bidang “NIRS Chemometric analysis”. Namun, tiada kajian yang telah 

menguji-kaji keberkesananya dalam pengunaan “fNIRS-BCI” setakat ini. Jadi, kajian 

ini telah menguji-kaji keberkesanan “Principal components artificial neural networks 

(PCs-ANN)” dan “Latent variables artificial neural networks (LVs-ANN)” dalam 

tugasan klasifikasi aktiviti-aktiviti sinaran otak. Fasa pertama kajian telah menguji-

kaji keberkesanan “PCs-ANN” dari segi proses pengurangan kebisingan sinaran, 

pemampatan saluran sinaran, perahan ciri-ciri sinaran, dan klasfikasi melalui “ANN”. 

Hasilan “PCs-ANN” terbaik telah mencatatkan purata ketepatan sebanyak 71.67% 

dalam tugasan klasifikasi empat kelas. Fasa kedua kajian telah menunjukkan hasilan 

optimum “Partial least square discriminant (PLS-DA)” dan “LVs-ANN” mampu 

mencapai purata ketepatan lebih tinggi pada 77.05% dan 84.94%, berbanding dengan 

kajian terbaik lepas yang mencapai purata ketepatan sebanyak 74.00% sahaja, dalam 

tugasan klasifikasi dua kelas. Prestasi “PLS-DA” dan “LVs-ANN” telah menunjukkan 

“PLS” adalah sesuai sebagai algoritma pemampatan sinaran “fNIRS”. Hasilan kajian 

telah menjadi fakta yang penting dalam proses reka cipta peralatan “fNIRS-BCI” bagi 

kegunaan orang kelainan upaya (OKU). Kesimpulannya, kajian ini telah menunjukkan 

kebolehan “PCs” dan “LVs” sebagai ciri-ciri isyarat aktiviti otak alternatif bagi 

tugasan “fNIRS-BCI”.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.0 Introduction 

This chapter described the paralysis issues in Malaysia and the challenges faced. The 

functional near-infrared spectroscopy brain-machine control interface (fNIRS-BCI) using 

artificial intelligence was proposed in this study. The research problem statement, 

objectives, scopes, and the significance of the study were discussed in detail. 

1.1 Background of study 

Fully control of the body might be a dream for a naturally physically disabled with late 

Amyotrophic Lateral Sclerosis (ALS) and complete ischemic stroke victim to execute. 

Based on the statistics reported by the Department of Social Welfare (JKM), Malaysia, in 

2017. Four hundred fifty-three thousand two hundred fifty-eight persons reported having 

personal disabilities. 65.2% of the disabilities potentially left significant effects on the 

individual working performance in their workspace (Department of Social Welfare, 2018). 

However, multitasking capability is becoming the main employment criterion in the fast-

moving working environment of Malaysia nowadays. Whereby it is not only saving the 

operation cost in terms of time and money value, but the element of workspace safety can 

also be secured. Hence, a hand-free neuro activity-based brain-computer interface (BCI) 

posed high potential which not only enrich the public choice in the multi-tasking and 

entertainment sections, but its high accessibility characteristic is expected to fit the needs 

of physical disabled persons for daily welfare enhancement. By integrating non-invasive 

BCI into wearable gadgets, such as glasses, hairband, and headset; Physical disabled end 
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users may interface with the facilities and perform high informative health status 

feedbacks to guardians in real-time without the restriction’s physical inaccessibility. 

Hence, it is valuable to focus on the BCI topic, especially in the effort to light weighting 

the current BCI system for low power embedded system integration without sacrifice the 

performance. 

 The first demonstration of functional near-infrared spectroscopy (fNIRS) 

technology feasibility in brain-computer interface (BCI) application was back in 2004 by 

Coyle et al.(Coyle et al., 2004). However, the development of fNIRS-BCI remains in the 

clinical trial stage and struggling toward commercialization (Martini et al., 2020). 

Numerous studies reported that the classification accuracy of BCI using only fNIRS 

samples was incomparable with electroencephalogram  (EEG) and a combination of both 

in hybrid mode (Ge et al., 2017), as the quality of fNIRS samples were highly influenced 

by motion artefacts and scalp intact condition when acquiring signal samples. Besides, 

direct classification using fNIRS signals from all the sensor channels across the major 

sections of brain in high-dimensional raw data states can be tedious and inefficient. 

Conventionally, the raw fNIRS data are pre-processed using signal denoise filters, channel 

compression, channel selection, and followed by feature extractions. BCI models based 

on selected or global average channel responses have resulted in relatively lower 

prediction accuracy when compared to a model trained using all channels (Janani et al., 

2018). In all channel scenario, signals acquired from all regions of brain cortexes were 

included for analysis without additional channel selection. It was vice-versa for regional 

or selection region average channel. 

 On the other hand, LVs-ANN and PCs-ANN are the two mature near-infrared 

spectroscopy (NIRS) signal analysis solution, such as in the chemometric analysis (Mohd 

Idrus et al., 2019) and hyper-spectral imaging (Uddin et al., 2020), but both solutions were 

rarely implemented in fNIRS-BCI studies. Hence, the study on both solutions in fNIRS-

BCI application are expected to validate their feasibility as an alternative BCI machine 

learning model without the needs of heavy computing deep learning framework. This 

topic is crucial in innovating non-invasive BCI system with higher potential for low power 

embedded system integration. However, a similar approach is rarely found in the fNIRS 

signal feature extraction process in BCI-related studies. The most recent study applied 
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PLS superficially for data treatment in the investigation about the relationship between 

the frontal brain activity and ongoing mental workload level only (Meidenbauer et al., 

2021). On the other hand, the viability of principal components (PCs) was confirmed in 

representing the hand grasping motion feature in EEG-based BCI (Mattar et al., 2017) and 

four-class BCI problems using fNIRS signals (Ong et al., 2021). Due to the supervised 

nature of PLS, it is expected to be more effective than PCA in feature extraction (Maitra 

et al., 2008). This necessitates an evaluation of the viability of PLS in fNIRS for BCI 

applications. 

 

1.2 Problem statement 

Functional near-infrared spectroscopy (fNIRS) probe setups are plug-and-play oriented 

with a wearable headband or cap appearance. The probe is mounted directly onto the 

human scalp and temporarily fixed using an elastic band or strap when recording brain 

activities for brain-computer interface (BCI) application. In real life, fitting influenced 

light source leakage, high hair density, and natural motion artefacts, such as eye winks 

and body actions, are the common source of noises found in fNIRS signals. Although the 

noise contamination is reducible by strict experimental precaution, exploring more 

dependable denoise filters and feature extractors is more significant in enhancing the BCI 

model performance. 

 To date, functional near-infrared-based brain-computer interface (fNIRS-BCI) 

studies are primarily focusing on the general performance benchmark only, such as the 

accuracy comparison between different brain imaging modalities (Shin et al., 2018b), pre-

processing algorithms (Qureshi et al., 2017), and classifiers variation (Khan et al., 2018; 

Trakoolwilaiwan et al., 2017) from the superficial perspective with unknown model 

optimisation status. The usage of ANN on non-binary BCI with non-statistical training 

features was also rarely reported.  

 Besides, conventional NIRS chemometric analysis methodologies, such as 

principal components artificial neural networks (PCs-ANN) and latent variables artificial 

neural networks (LVs-ANN), are not studied in fNIRS-BCI-related studies. Although, the 

previous study proved that LVs were effective in enhancing machine learning model 

performance and simplifying optimal network structure in NIRS chemometric analysis 
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(Mohd Idrus et al., 2019). No traceable study has examined the extraction efficiency of

 PCs and LVs features in fNIRS-BCI applications, especially when coupled with 

ANN classifier. Thus, there is a need to investigate the feasibility of PCs-ANN and LVs-

ANN modelling in fNIRS signals for BCI applications, along with the support of 

quantitative performance measures. 

 

1.3 Research objectives 

i. To investigate the feasibility of principal components (PCs) in representing 

functional near-infrared spectroscopy (fNIRS) signal features as training inputs in 

developing principal components artificial neural networks (PCs-ANN) for brain-

computer interface (BCI) application. 

ii. To investigate the feasibility of principal components (LVs) in representing 

functional near-infrared spectroscopy (fNIRS) signal features as training inputs in 

developing latent variables artificial neural networks (LVs-ANN) for brain-

computer interface (BCI) application. 

iii. To evaluate the classification accuracy of developed artificial neural networks 

(ANN) for brain activities classification using cross-validation. 

1.4 Research scope 

This study was primarily targeted as the algorithmic methodology justification of 

functional near-infrared spectroscopy (fNIRS) signals in the brain-computer interface 

(BCI). Due to the concern sample’s homogeneity, all the fNIRS signals analysed in this 

study were recorded from healthy subjects only, which are free from any psychiatric, 

neurological, and other neurological-related diseases. This setting was implemented to 

minimize the effect of subject-influenced uncertainties on the validity of study outcomes.  

 The usage of public access datasets enhanced the study's transparency and 

improved research outcomes' reliability when benchmarked with relevant literature. On 

the other hand, the fNIRS signal analysed in this study was partially extracted from two 

open-access datasets  (Shin et al., 2017b, 2018d). A total of 240 and 1560 brain activities 

samples were analysed in principal components artificial neural networks (PCs-ANN) and 
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