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ABSTRACT 

Stroke rehabilitation is a therapeutic process aimed at maximising the patient's 

physical and social potential. Although patients can recover full consciousness from 

stroke, most of them cannot perform activities of daily living with the affected limbs. 

Impairment of the limbs significantly limits the level of activity as well as social and 

physical interactions of a post-stroke patient. The performances of patients are then 

clinically assessed using standardised scales such as the Barthel Index and Functional 

Independence Measure to determine if aforementioned patients are able to move on to 

the next stage of recovery. An EEG sub-band PSD dataset is used to develop an 

artificial neural network predictive model to classify the post-stroke patients into their 

respective recovery stages. Due to the small dissimilarity in intensity of certain sub-

bands, classification between intermediate and advanced stages is predicted to be more 

difficult. At the end of the study, an ANN predictive model is developed with a 

satisfactory performance of 74.1%. When comparing classification results with an 

actual physiotherapist, an agreement rate of 58. 22% is achieved. This research 

contributes to helping medical professionals in evaluating the recovery progress of a 

post-stroke patient, therefore easing the rehabilitation process of a patient towards full 

recovery. 
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ABSTRAK 

Pemulihan strok adalah proses terapeutik yang bertujuan untuk memaksimumkan 

potensi fizikal dan sosial pesakit. Walaupun pesakit boleh pulih sepenuhnya daripada 

strok, kebanyakan mereka tidak dapat melakukan aktiviti kehidupan seharian dengan 

anggota yang terjejas. Kerosakan anggota badan dengan ketara mengehadkan tahap 

aktiviti serta interaksi sosial dan fizikal pesakit selepas strok. Prestasi pesakit 

kemudiannya dinilai secara klinikal menggunakan skala piawai seperti Indeks Barthel 

dan Ukuran Kemandirian Fungsian untuk menentukan sama ada pesakit yang 

disebutkan di atas dapat meneruskan ke peringkat pemulihan seterusnya. Dataset PSD 

sub-jalur EEG digunakan untuk membangunkan model ramalan rangkaian saraf tiruan 

untuk mengklasifikasikan pesakit selepas strok ke dalam peringkat pemulihan masing-

masing. Disebabkan perbezaan kecil dalam keamatan sub-jalur tertentu, klasifikasi 

antara peringkat pertengahan dan lanjutan diramalkan menjadi lebih sukar. Pada akhir 

kajian, model ramalan ANN dibangunkan dengan prestasi yang memuaskan sebanyak 

74.1%. Apabila membandingkan keputusan klasifikasi dengan ahli fisioterapi sebenar, 

kadar persetujuan 58. 22% dicapai. Penyelidikan ini menyumbang untuk membantu 

profesional perubatan dalam menilai kemajuan pemulihan pesakit selepas strok, oleh 

itu memudahkan proses pemulihan pesakit ke arah pemulihan sepenuhnya.
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1  CHAPTER 1 

INTRODUCTION 

This chapter provides an overview of the research while emphasising current issues on 

the assessment of recovery stages in post-stroke rehabilitation, described in Sections 

1.1 and 1.2. The aim, objectives along with the scope of research are presented in 

Sections 1.3, 1.4 and 1.5 respectively. The outline of this thesis is then briefly 

explained in Section 1.6. 

1.1 Research Background 

Stroke is a medical condition in which poor blood flow to the brain results in cell death. 

As illustrated in Figure 1.1, there are two main types of stroke: ischaemic (right) and 

haemorrhagic (left). Ischaemic stroke occurs when a blockage or obstruction of small 

blood vessels occurs around the brain, whereas haemorrhagic stroke occurs when a 

weakened blood vessel bursts and bleeds into the surrounding brain [1]. According to 

the Institute for Health Metrics and Evaluation (2017), stroke represents the third 

leading cause of mortality in Malaysia, with more number of stroke patients being men 

[2]. Approximately 80% of stroke incidences are of ischaemic type, while the 

remaining are of haemorrhagic type. Among the ischaemic cases, 43% are due to large 

vessel disease, 35% from small vessel disease (lacunar stroke) and the rest cardio-

embolic strokes [3]. 
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Figure 1.1: Types of Strokes: Haemorrhagic (left) and Ischaemic (right) [4] 

 

For many years, medical teams such as the National Stroke Association of 

Malaysia (NASAM) have provided stroke care, except for haemorrhagic stroke, which 

require surgical interventions that are primarily managed by neurosurgeons [5]. Stroke 

patients who manage to survive this debilitating condition undergo rehabilitation 

treatment, so that they are able to carry out activities of daily living (ADL) with 

minimal dependence. Stroke rehabilitation is the process by which those with disabling 

stroke undergo treatment to help them return to normal life as much as possible by 

regaining and relearning the skills of everyday life. After a patient has undergone 

rehabilitative exercises for a period of time, a clinical assessment based on various 

standards is performed to evaluate the stage of recovery of the aforementioned patient. 

Based on the results, physiotherapists then make decisions on whether the patient is in 

the early, intermediate or advanced stage of recovery. However, due to the 

shortcomings of these assessments which are discussed in the problem statement, in 

which these assessments are often subject to the subjectivity of the physiotherapists, a 

supportive system classifying the stroke patients into aforementioned recovery stages 

using electroencephalography (EEG) is suggested. 

Electroencephalography (EEG) is a type of electrophysiological detection 

technique designed to record and measure brain electrical activity.  Electrodes are 

placed on the scalp, and recent advancements in technology have made it possible to 

be non-invasive. EEG measures voltage fluctuations in the brain neurons arising from 

ionic current. Clinically, EEG refers to the analysis of the spontaneous electrical 

activity of the brain over a period of time, as measured from several electrodes 

mounted on the scalp [6]. In general, the diagnostic applications of EEG emphasise on 

either event-related potentials (ERPs) [7] or the spectral content [8]. ERP analysis 

captures the synchronous neuronal activity in the EEG signal that is phase-locked to 

the onset of a discrete event. Spectral analysis quantifies the relative contribution of a 

particular frequency to the EEG signal. Various excitatory and inhibitory feedback 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 20 

loops interact to entrain the activity of neuronal populations at a particular frequency. 

Such synchrony between disparate brain regions is thought to promote the binding of 

information across widespread neural networks. 

In particular, it is well established that quantitative EEG (qEEG) indices based 

on the relationship between the power of slow and fast activities as estimated by EEG 

power spectrum analysis, are reliable markers to characterize the brain status [9]. 

qEEG can also be employed to improve patient management during ischemic stroke 

[10] and to predict clinical efficacy of rehabilitation even in the chronic stage [11]. 

Therefore, this research proposes an implementation of an artificial neural 

network trained to classify post-stroke patients into three recovery categories: early, 

intermediate and advanced of the inpatient rehabilitation stage. The network is trained 

with data collected from EEG signals of the brain with a non-invasive method, which 

is through wearing a head gear: the Emotiv Insight. The EEG signals are processed 

quantitatively, obtaining the power spectral density (PSD) of four frequency sub-

bands: delta (0.5 – 4 Hz), theta (4 – 7 Hz), alpha (8 – 12 Hz) and beta (12 – 30 Hz). 

The designed classification network is aimed at providing a second opinion to 

physiotherapists during assessment of a patient’s recovery stage. The overall 

performance of the developed network is evaluated using qualitative and quantitative 

approaches to assess its practicality and reliability. 

1.2 Problem Statement 

Stroke rehabilitation is a therapeutic process aimed at maximizing the physical, 

psychological and social potential of a patient. Patients can regain full consciousness 

after a stroke, but most patients are unable to perform activities of daily living (ADL) 

on their affected limbs. Extremity dysfunction severely limits the level of activity, 

social and physical interactions of stroke victims and requires rehabilitation. 

Functional recovery of the limbs can be observed, in whole or in part, after long-term 

rehabilitation exercises. 

Clinically, the various sequelae in the limbs with an impact on ADL have been 

assessed using the available standardised scales [12]. Based on the results of these 

scales, the best chance of recovery is between the second and fifth months after a 

stroke. In general, there are five stages of post-stroke care settings: medical treatment 
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in hospitals, in-patient rehabilitation, at-home health care, out-patient rehabilitation 

and self-care after discharge. When symptoms of stroke are identified on an individual, 

he/she should be taken to a hospital immediately for treatment. The duration of stay in 

the hospital is varied based on the severity of stroke. After treatment, the next step 

would be to continue rehabilitation. An in-patient rehabilitation facility such as the 

National Stroke Association of Malaysia (NASAM) is a facility for patients to 

participate in a minimum of three hours of therapy a day, provided by an organised 

team of specially trained professionals. During rehabilitation, physiotherapists assist 

patients in practising and performing simple tasks intensively. The level of tasks 

differs based on the progress of recovery for each individual patient, mainly into three 

categories: early, intermediate and advanced. The performances of patients are then 

clinically assessed using the available standardised scales such as the Barthel Index 

(BI) [13] and the Functional Independence Measure (FIM) [14] to determine if 

aforementioned patients are able to move on to the next stage of recovery. However, 

these scales have a limited capacity for detecting less-sensitive changes that are still 

required for measuring stroke patient outcomes. More importantly, these assessments 

are often subject to the subjectivity of the physiotherapists. Therefore, a supportive 

tool of classifying post-stroke patients into recovery stages using quantitative EEG is 

proposed in this thesis. 

1.3 Motivation of Study 

Staff-patient interaction at all post-stroke treatment levels is vital to the success at each 

stage of the dedicated recovery programmes. Clancy et al. [15] examined staff–patient 

communication in inpatient stroke environments for people with post-stroke aphasia 

and those who support them. As a way to improve staff-patient experiences in 

addressing the psychosocial needs of stroke survivors and their caregivers, ongoing 

staff training, the provision of an aphasia-friendly and a communicatively stimulating 

ward environments have been proposed. Gillespie et al. [16] confirmed, however, that 

stroke practitioners were commonly engaged in the routine use of non-

pharmacological post-stroke emotionalism (PSE) interventions that were not clinically 

tested, and the efficacy of these methods is still unknown. Dohl et al. [17] recently 

released an updated but quick and effective questionnaire, i.e. metrics on health-related 
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quality of life (HrQoL) as a way to recognize patients in need of post-stroke health 

care, as well as identifying groups for potential interventions. But, the later attempts 

that Parker et al. [18] had reviewed on the need for appropriate visual and auditory 

input for digital simulation to assist staff-patient communication seem to have been 

overlooked in the whole current digital technological advances. 

An increased severity of the stroke contributes to increased demand for 

caregivers’ services. Unfortunately, having compensated for the extent of the stroke, 

the involvement of an active caregiver did not encourage further treatment for the 

stroke survivors [19]. Most caregivers are unsure in their decisions, especially in the 

absence of specialist doctors. Thence, there is a possibility that the decided uncertain 

progression of the severity level was based on heuristic measure, which subjectively 

relied on staff-patient co-operation, caregiver experience and patient trust. Thus, as 

Parker et al. [18] has recognized, computational visualization for stroke rehabilitation 

needs to be developed and used to enhance staff-patient engagement and reduced 

heuristic assessment, thereby providing caregivers with the best combinations of 

knowledge in the absence of a specialist doctor. Therefore, in fact, a quick screening 

that can envision the degree of post-stroke progression is a critical innovation for 

solving these problems. 

Hence, up to this certain application, this research is motivated to assist the 

caregiver with a rapid interpretation of EEG signal using different perspectives of 

visualization. Apart from decomposing the complex variant of the analogue EEG 

brainwave signal, which requires higher technical knowledge to decipher the pattern, 

this study alternatives are to transform the signal into a form of image, thus facilitating 

the patient or caregiver's comprehension of the pattern, thereby enhanced the staff-

patient co-operation. A multi-layer feedforward artificial neural network (ANN) is 

developed to classify the EEG signals of post-stroke patients into categories based on 

the stages of post-stroke therapy. The ANN model is used in this study because neural 

networks are designed such that they are able to classify or group raw input to 

comprehend sensory data through machine perception. 
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1.4 Aim and Objectives 

This study aims to develop a supportive artificial neural network (ANN) system that 

classifies post-stroke patients into recovery stages of early, intermediate and advanced 

using electroencephalography (EEG) signals. In order to achieve this aim, the 

following objectives have been set: 

i. To acquire EEG signal data samples of post-stroke patients from different 

recovery stages – early, intermediate and advanced; and 

ii. To visualise EEG patterns of post-stroke patients from different recovery 

stages – early, intermediate and advanced in terms of energy distribution; and 

iii. To develop EEG signals classification using ANN predictive model; and 

iv. To evaluate the performance of the developed ANN predictive model using 

quantitative analysis. 

1.5 Scope of Research 

1. In this study, the frequency domain feature of the EEG signals is utilised for 

post-stroke classification. The signals are processed to obtain the power 

spectral density (PSD) of the delta (0.5 – 4 Hz), theta (4 – 7 Hz), alpha (8 – 12 

Hz) and beta (12 – 30 Hz) sub-bands. Specific band power activities are 

considered to be linked to brain functions and in case of stroke, are associated 

to different degrees of neuronal survival in the ischaemic regions and therefore 

can assume a prognostic value [10][20][21][22]. EEG power is markedly 

affected in stroke patients with a significant increase in delta power (0.5 – 4 

Hz) accompanied by a decrease in alpha (8–12 Hz) and beta (14–30 Hz) power 

producing a diffuse slow-wave EEG pattern [23]. The theta band (4 – 7 Hz), 

although not common in rehabilitation studies, is reported to be associated with 

the ischaemic penumbra, the area surrounding an ischaemic event [24]. 

2. The stroke assessment scales focused on this thesis are the Barthel Index (BI) 

and the Functional Independence Measure (FIM). The BI was one of the earlier 

standardised functional assessments. The FIM was developed to be a more 

comprehensive tool [25]. Research has shown a relationship between the two 

instruments because a BI score can be derived from FIM score [26]. The scores 
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obtained from BI and FIM and utilised by physiotherapists to decide whether 

a patient is able to move on to the next stage of post-stroke therapy. The 

developed classification network is designed to support the assessment process 

of inpatient rehabilitation. While the network is capable of classifying post-

stroke patients into the appropriate stages of therapy based on EEG, it is, by no 

means, an effort to replace physiotherapists during performance tests, but 

rather a supporting opinion so as to ensure the reliability of the assessment 

outcomes. 

3. The EEG signals are collected using the 5-channel Emotiv Insight head wear. 

It is a non-invasive portable device, collecting data from the AF3, AF4, T7, 

T8, Pz locations. All recordings are saved in the EMOTIV Pro software, and 

are later transferred to MATLAB for pre-processing. 

4. The neural network classification model is designed using “nntraintool” 

toolbox of the MATLAB 2019b software. The developed neural network is of 

the multi-layer feedforward architecture with backpropagation (BP) supervised 

training. 

1.6 Thesis Outline 

 

This thesis is organised into five chapter, discussing the theoretical aspect as well as 

the development process of the project. These chapters are arranged in sequence orders 

as follows: 

 Chapter 1: Introduction. This chapter presents the introduction of the research, 

the problem that needs to be solved, the aim and objectives, and also the scope of 

research. 

 Chapter 2: Literature Review. This chapter reviews the studies and researches 

accomplished by other scholars who are related to this project. The methods to assess 

post-stroke recovery of patients are presented in this chapter. 

 Chapter 3: Methodology. This chapter describes the approaches used 

throughout the development of this research, covering the methods of designing an 

EEG data collecting experiment procedure, the pre-processing of the collected data, as 

well as the procedure to build a classification model using the artificial neural network. 
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 Chapter 4: Results and Discussion. This chapter presents the findings, 

observation and data analysis of this research in form of tables, graphical methods and 

data points. These results are further discussed and commented accordingly. 

 Chapter 5: Conclusion. This final chapter concludes the findings of this 

research. The hypotheses are answered accordingly. Future improvement and 

recommendations are presented as well, to be utilised as a contribution for others to 

hopefully gain benefits from this study.
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