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ABSTRACT 

Eggshells are daily food waste disposed of in landfills, producing environmental issues 

and an unpleasant odour. Eggshells were crushed to form eggshell powder and may be 

suitably applied as a filler in epoxy resins to improve their mechanical properties as 

neat epoxy resins have the drawbacks of low shear strength, low fracture toughness. 

In this study, dog-bone specimens were fabricated to investigate the mechanical 

properties of toughened epoxy with eggshell powder (TEEP), such as the elastic 

modulus, Poisson's ratio and tensile strength. Double Cantilever Beam (DCB) and 

End-Notched Flexure (ENF) tests were used to determine the Mode-I and Mode II 

fracture energy of TEEP specimens, respectively. For this purpose, oven-dried 

eggshells were crushed to obtain particles with a size of 150 μm. The volume fraction 

of eggshell powder in epoxy was designated as 0%, 2.5%, 5%, and 10%, respectively. 

The epoxy resin system was made by mixing EPIKOTE Resin 828 and Hardener 651 

with a mixing ratio of 5:2 by weight. The results showed that the tensile strength, 

elastic modulus, Mode I and Mode II fracture energies of TEEP were optimum at 5% 

eggshell with the enhancement of 36.8%, 24.9%, 60.3% and 166.3%, respectively than 

those of neat epoxy. This is due to the ability of eggshell powder as a crack arrestor, 

indicated by rough fracture surfaces. However, 10% TEEP prone to agglomeration of 

eggshell powder lead to poor bonding with epoxy resin and substantially reduces 

mechanical properties. Subsequently, the shear strength of the single-lap joint (SLJ) 

with the 38.1mm overlap length, bonded with 5% TEEP has improved up to 72.7% 

compared to that of neat epoxy. The finite element modelling framework was 

developed using the Cohesive Zone Modelling (CZM) technique by incorporating the 

traction-separation relationship as a constitutive model. Here, the measured values 

were adopted, and good agreement with experimental datasets was found with average 

discrepancies less than 10.8%. 
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ABSTRAK 

Kulit telur adalah bahan buangan harian yang biasanya dilupuskan di pusat perlupusan 

sampah yang menjurus kepada masalah alam sekitar dan bau yang tidak 

menyenangkan. Kulit telur dihancurkan menjadi serbuk kulit telur untuk dijadikan 

sebagai pengisi dalam epoksi resin untuk meningkatkan sifat mekanikalnya kerana 

epoksi resin biasa mempunyai kekuatan ricih yang rendah, dan tenaga patah yang 

rendah. Spesimen tulang anjing difabrikasi untuk mengkaji sifat mekanikal epoksi 

resin iaitu, (modulus elastik, nisbah Poisson dan kekuatan tegangan) dan diuji di bawah 

bebanan ujian tegangan. Ujikaji rasuk terjulur berganda (DCB) dan lenturan hujung 

takukan (ENF) digunakan untuk menentukan ujian patah spesimen TEEP. Untuk 

tujuan ini, kulit telur yang telah dikeringkan dihancurkan kepada saiz partikel 150μm. 

Nisbah separa serbuk kulit telur sebagai pengisi epoksi resin yang dikaji adalah 

masing-masing sebanyak 0%, 2.5%, 5%, and 10% relatif berat epoksi. Sistem epoksi 

resin dihasilkan dengan mencampurkan Epikote Resin 828 and Hardener 651 dengan 

nisbah berat campuran 5:2. Keputusan menunjukkan kekuatan tegangan, modulus 

elastik, tenaga patah Mod I dan Mod II adalah optimum pada 5% TEEP dengan 

peningkatan masing-masing sebanyak 36.8%, 24.9%, 60.3% and 166.3% berbanding 

epoksi biasa. Ini disebabkan oleh kekesatan permukaan yang lebih baik dan kelebihan 

serbuk kulit telur sebagai penahan retakan. Walaubagaimanapun, 10% TEEP 

menunjukkan penggumpalan serbuk kulit telur yang memberikan ikatan kurang baik 

dengan epoksi resin dan seterusnya mengurangkan sifat mekanikalnya. Selanjutnya, 

kekuatan ricih dalam sambungan tindih-tunggal dengan tindihan terpanjang untuk 5% 

TEEP menunjukkan peningkatan sebanyak 72.7% berbanding epoksi biasa. Kerangka 

model unsur terhingga telah dibangunkan menggunakan teknik model zon kohesif 

(CZM) dengan menggunakan hubungan tarikan-pemisahan sebagai model konstitutif. 

Didapati dengan menggunakan sifat bahan yang ditententuukur memberikan 

persetujuan yang baik dengan data eksperimen dengan selisih purata kurang daripada 

10.8%. 
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CHAPTER 1  

 

 

INTRODUCTION AA   

1.1 Research background 

Recently, considerable literature has grown up within adhesively bonded joint studies. 

New experimental methods and numerical models are continually presented in the 

scientific literature and employed in the construction industry to demonstrate the 

significance of this joining type. Sugiman et al. (2019) have conducted an 

experimental and numerical method to investigate the effect of media and aging 

conditions on the durability of adhesively bonded joints, and a significant impact was 

reported. Besides, an experimental and numerical model of adhesively bonded single-

lap joint (SLJ) are based on the failure modes exhibited, load-displacement behaviours, 

bond-slip relations, and the strain distribution along the bond length at different 

loading stages was performed by Ungureanu et al. (2018). The stress-strain behaviour 

and strain distributions along the bond length of SLJ is based on 3-Dimensional (3D) 

Finite Element Modelling (FEM) analysis and showed good agreement with 

experimental datasets. 

The adhesively bonded joints have been widely utilized in numerous industries 

due to their interesting characteristics, such as excellent resistance under fatigue 

loading and joining dissimilar materials. Besides, adhesively bonded joints 

demonstrate lower stress concentrations than mechanically fastened joints such as 

riveted, welded, and bolted joints (Mariam et al., 2018). According to Ozer (2018), the 

potential benefits of using adhesively bonded joints are providing more uniform stress 

distribution along the overlap length due to the absence of holes. A SLJ, as seen in 

Figure 1.1, tickles the attention of researchers owing to its simple manufacturing 
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method and serves as the basis for structural design and certification of bonded 

structures. 

 

Figure 1.1: The assembly of a single-lap joint (Lempke, 2013) 

Epoxy resin is a prominent polymer-type adhesive widely used in construction 

and civil engineering sectors to join metal-metal materials. Epoxy resin has been 

certified in other essential applications, such as manufacturing, mechanical and 

construction sectors. Due to their potential applications in the construction industry, 

the adhesives strength and joining variables are important and challenging research 

areas. Nevertheless, most epoxy resins have a severe drawback: their brittleness 

suggests poor fracture toughness, low impact strength, and low crack propagation 

resistance (Kuzmina et al., 2022). Its inherent fragility has limited its application in 

industries requiring high-impact resistance and fracture toughness. 

Awareness of environmental concerns has led to reusing bio-degradable 

materials as fillers in epoxy resin. According to Li et al. (2022), adding the finer 

constituents into a continuous epoxy resin matrix effectively enhances the epoxy resin 

toughness. The large aerial particle surface in fillers promotes strong bonding reactions 

within the epoxy resin matrix (Yeasmin et al., 2021). Among the available bio-waste 

additives, the widely accessible and inexpensive chicken eggshell has good potential 

as a filler in epoxy resin since it is a daily food waste disposed of in every household. 

The chicken eggshells have desirable calcium carbonate (CaCO3) content to increase 

the toughness and associated impact strength. According to Ahmed et al. (2021), an 

eggshell mainly comprises 95% CaCO3 mineral in the form of calcite and organic 

material of approximately 3.5%. 

From fracture mechanics fundamental, there are three failure modes exhibited, 

Mode I (opening), Mode II (shear), and Mode III (tearing), as shown in Figure 1.2. 

Mode III, also referred to as tearing mode, is characterized by shear stresses occurring 

at out-of-plane shear, and prone to less dominant compared to Mode I and Mode II 

failures. This failure mode is typically entails a tearing or sliding motion parallel to the 

direction of the applied shear force. In the case of single lap joints, Mode III failure is 
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not seen as the primary loading direction involves tensile or shear stresses along the 

bond line. In a typical single lap joint, the adherends are attached and primarily 

subjected to tension or shear stresses within the overlap region. This geometric 

configuration is not applicable for Mode III presence, which entail shear deformation 

perpendicular to the joint. 

According to Ozer (2018), adhesive joint failure comprised of cohesion within 

the adhesive layer, interfacial failure between adherends and epoxy resin, and 

adherend failure. This study focused on Mode I and Mode II failure associated with 

cohesive failure. A common technique to measure Mode I fracture energy, GIC of 

adhesive is the Double Cantilever Beam (DCB) test. In this study, DCB specimens are 

fabricated to measure the fracture energy value of toughened epoxy with eggshell 

powder (TEEP). In addition, the End-Notched-Flexure (ENF) test is recognized as a 

standard test to assess and determine fracture energy in shearing Mode, GIIC (also 

known as delamination toughness subjected to Mode II failure).  

 

Figure 1.2: Failure modes from fracture mechanics (Oterkus et al., 2016) 

To increase confidence in the broader applicability of eggshell powder as filler 

in epoxy, a reliable numerical model must be developed to perform strength prediction 

and associated structural response of TEEP in adhesively bonded joints. Hence, 

numerical analysis was performed using the Finite Element Analysis (FEA) modelling 

framework. FEA is a powerful tool used to predict the structural response of continuum 

structures, more favourable in recent years due to the significant evolution in 

computing technology. Incorporation of physically based traction-separation as a 

constitutive model can incorporate independent material properties to represent better 
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failure and fracture within cracked bodies investigated. The Cohesive Zone Modelling 

(CZM) is a numerical technique used to assess the failures of adhesive joints. CZM 

simulates the fracture process by employing local strength and energy properties to 

define the delamination process (Carvalho & Campilho, 2018).  

The research literature on the incorporation of TEEP in adhesive joints is 

limited, and an investigation to assess the suitability of eggshell powder as fillers are 

required. This research aims to measure the material properties and fracture energy of 

TEEP and evaluate's improvement of TEEP to static shear strength compared to neat 

epoxy resin. Later, FEA models are developed to perform strength predictions of SLJ 

toughened with TEEP. The post-processing output from FEA models is validated 

against the measured experimental dataset, joint variables and associated discrepancies 

are discussed, respectively. 

1.2 Problem statement 

According to Moekti (2020), global egg consumption reached 70 million metric tonnes 

in 2015 and is expected to approach 89 million metric tonnes in 2030, with an annual 

growth rate of 1.6% from 2015 to 2030. Eggshells are daily food waste disposed of in 

every household worldwide and the eggshell trash disposed of in landfills has produced 

environmental issues due to disease growth. Their decomposition has generated an 

unpleasant odour and microbial growth. Besides, the disposal releases poisonous and 

damaging gases, including ammonia and hydrogen sulphide, which can harm the 

environment and lead to human illnesses (Rubright, Peaarce & Peterson, 2017). The 

eggshells contribute to the sustainable development of building materials as high 

calcium content in the eggshells can promote high-strength building materials with 

excellent fracture toughness (Sulaiman et al., 2021). 

On the other hand, epoxy resins are commonly utilized in the construction 

industry. According to Farooq, Teuwen & Dransfeld (2020), epoxy resins have the 

drawbacks of a longer curing time, low toughness, low impact resistance, and inbuilt 

brittleness of the cured resin. Farooq et al. (2020) concluded that adding fillers to the 

epoxy resin tends to increase the toughness and strength of epoxy resin. Besides, the 

modified epoxy resin can increase its shear strength and load-carrying capacity to the 

applied stress. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 

The literature mainly reported on using synthetic filler to toughen epoxy resin. 

The awareness of environmental concerns has led to the reuse of bio-degradable 

materials as fillers in epoxy resin systems, and the research literature on the 

incorporation of eggshell powder-filled epoxy is fairly limited. Therefore, a study on 

TEEP is required to explore these advanced materials' applicability and consider 

eggshell powder volume fraction and other joint variables, such as the adhesive 

overlap length. The failure modes and shear strength of adhesively bonded SLJ are 

evaluated and discussed accordingly. 

Due to large arrays involved in adhesively bonded joints, it is difficult to 

conduct a large volume of experimental testing series resulting in expensive and 

laborious efforts. The evolution of computing technology promotes accessibility to 

numerical modelling, especially within the FEA framework. The beauty of FEA 

modelling is the ability to incorporate a constitutive model (also known as the material 

model). Formerly, there were difficulties in modelling damage in cracked bodies due 

to singularity stress ahead of the crack tip. It requires extremely fine meshing, leading 

to high computational times and difficulty in obtaining convergence. A physically 

based model, such as the traction-separation relationship driven by the energetic 

approach, alleviated the difficulties. Traction-separation relationship only requires two 

material parameters, maximum tensile strength, 𝜎𝜎𝑜𝑜 and fracture energy, 𝐺𝐺𝑐𝑐. Previous 

researchers employed calibrated values of material properties from open literatures. In 

order to obtain a reliable result, measured material properties from independent testing 

(or if available in reported literatures, used a subset of materials employed). This allow 

better strength prediction to enhance the reliability of strength predictions from FEA 

models developed (Omar, 2023). 

1.3 Research objectives 

The primary aim of this study is to investigate the tensile properties and  fracture 

energy of TEEP as a function of eggshell volume fractions and later incorporate it 

within FEA modelling. Static shear strength of adhesively bonded joints is also 

investigated experimentally and given in the testing series. 2-Dimensional (2-D) FEA 

models are developed to incorporate explicitly frictional load transfer, surface 

interactions, and specimen size. Later, the shear strength of adhesively bonded joints 
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