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ABSTRACT 

 

 

In a high-dimensional dataset (HDD), reducing the “curse of dimensionality” via 

feature selection is crucial. Recently, the integration of metaheuristic algorithms in 

solving feature selection problems had yielded outstanding results, according to 

literature findings. Hence, this study focused on integrating the Whale Optimisation 

Algorithm (WOA) for filter-based feature selection in HDDs. However, the WOA is 

known to have a slow convergence speed issue caused by the control parameter, a, 

which influences the balancing of the exploration and exploitation phases, eventually 

affecting the searching strategy. Therefore, this research proposed a modified WOA 

(mWOA) by inversing the control parameter values to allow the mWOA more search 

spaces during the initial searching phase, which eventually would increase the 

convergence speed. The proposed mWOA was implemented as the filter-based feature 

selection in four benchmark medical HDDs, namely Colon, CNS, SMK_CAN_187, 

and GLI_85. The performance of the proposed mWOA was compared against those of 

two filter-based feature selection algorithms, namely the original WOA and the Grey 

Wolf Optimiser (GWO). It was proven that the proposed mWOA outperformed the 

WOA and the GWO in 3 out of 4 cases (75%) in both best and average execution times 

when selecting the most relevant features of the HDDs. In addition, the mWOA also 

outperformed the WOA and the GWO in 8 out of 12 test cases (67%) in classification 

accuracy when using Decision Tree, Support Vector Machine, and Naïve Bayes 

classifiers. 
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ABSTRAK 

 

 

Pengurangan curse of dimensionality dengan kaedah pemilihan ciri adalah suatu 

perkara yang penting dalam set data berdimensi tinggi (HDD). Kini, penggunaan 

algoritma metaheuristik dalam menyelesaikan masalah pemilihan ciri telah dapat 

menghasilkan keputusan yang cemerlang menurut kajian lepas. Oleh itu, kajian ini 

menumpukan pada algoritma metaheuristik yang popular, iaitu Whale Optimisation 

Algorithm (WOA), untuk pemilihan ciri berasaskan filter dalam HDD. Walau 

bagaimanapun, WOA didapati mempunyai isu kelajuan penumpuan perlahan 

disebabkan oleh parameter kawalan, a, yang mempengaruhi keseimbangan fasa 

penerokaan dan eksploitasi, yang akhirnya mempengaruhi strategi pencarian ciri. 

Justeru, penyelidikan ini mencadangkan modified WOA (mWOA) dengan 

menyongsangkan nilai parameter kawalan bagi membolehkan mWOA mempunyai 

lebih banyak ruang carian dalam fasa pencarian awal yang akhirnya meningkatkan 

kelajuan penumpuan. Dalam kajian ini, mWOA telah digunakan dalam pemilihan ciri 

berasaskan kaedah filter pada empat set data HDD perubatan, iaitu, Colon, CNS, 

SMK_CAN_187, dan GLI_85. mWOA telah dibandingkan dengan dua algoritma 

pemilihan ciri berasaskan kaedah filter, iaitu WOA asal dan Grey Wolf Optimiser 

(GWO). Berdasarkan keputusan eksperimen, telah terbukti bahawa prestasi mWOA 

telah mengatasi WOA asal and GWO di dalam 3 daripada 4 kes (75%) untuk kedua-

dua kes terbaik dan kes purata masa pelaksanaan apabila memilih ciri yang paling 

penting daripada HDD. Selain itu, ketepatan klasifikasi mWOA juga mengatasi WOA 

dan GWO di dalam 8 daripada 12 kes (67%) apabila menggunakan pengelas-pengelas 

Decision Tree, Support Vector Machine dan Naïve Bayes.  
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CHAPTER  1   

 

 

 

INTRODUCTION 

1.1 Background of study 

For the past decades, data mining has always been the research hotspot for many 

researchers. Data mining is a broad field of data science, which tries to find patterns 

and characteristics in a massive quantity of data. It includes regression, clustering, and 

data classification [1]. Data classification is a fascinating task in data mining, which 

entails assigning the class label of instances based on a previously trained model [2]. 

Undeniably, with the rapid development of science and technology, the expansion of 

datasets is not a new phenomenon anymore. Datasets are getting larger and higher in 

dimensionality over the years. To further discuss the meaning of high-dimensional 

datasets (HDDs), one must know the form in which a dataset is usually represented. 

Datasets are typically interpreted as a matrix, with the row representing instances, 

while the column representing features. Datasets with a great number of features are 

categorised as HDDs [3]. A high dimensionality results in unmanageable memory 

constraints and high training and computing costs, which cause the “curse of 

dimensionality” [3], [4]. Therefore, there is a need to perform dimensionality reduction 

to reduce the number of features without compromising the retrieval of useful 

information in HDDs to ensure good classification performance. 

Not all features in HDDs are relevant to provide sufficient information for data 

classification. These irrelevant features could result in low classification performance. 

Thus, improving the performance of the classification of HDDs relies on feature 
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selection to perform dimensionality reduction. Feature selection is a process of 

selecting the most meaningful features [5]. Feature selection can also be defined as 

omitting irrelevant and non-essential features in HDDs to not only reduce execution 

time but also increase the predictive precision of a classifier [6]–[8]. Feature selection 

has two key competing goals: (1) optimising classification efficiency and (2) 

minimising the number of features to solve the curse of dimensionality [9]. To balance 

the trade-off between these two opposing priorities, feature selection can be seen as a 

multi-objective challenge. Therefore, the pre-processing of data is very important to 

generate compact yet quality datasets for classification. To put it another way, feature 

selection aims to choose suitable features that contribute the most to the classification 

model in order to achieve higher accuracy. 

Feature selection can be further categorised into three methods, namely 

wrapper-based, embedded-based, and filter-based [10]. Wrapper-based feature 

selection makes use of the strength of the base classifiers to find the best features in a 

dataset, whereas embedded-based feature selection takes place during model training 

in the machine learning algorithm [11]. Both wrapper-based and embedded-based 

methods result in higher execution time due to the intervention of the classifiers in the 

feature selection process. On the other hand, filter-based feature selection methods rely 

on mutual information in the dataset and rank its features by generating a score for 

each feature, independent of the classification model [11]. It is worth mentioning that 

wrapper-based methods are computationally less feasible for HDDs due to the higher 

execution time by the classification model [4]. As for embedded-based methods, these 

require certain predictive models, whereas filter-based methods can be combined with 

any kind of predictive model and are fast when calculating the HDDs [4]. Among these 

three methods, it is noticeable that filter-based feature selection selects a subset of 

features without using any learning algorithm, and thus it is relatively faster than 

wrapper-based methods and useful in HDDs. Not only that, filter-based methods have 

low complexity among all types of feature selection and are compatible with diverse 

datasets, including HDDs [4], [11]. 

Metaheuristic optimisation algorithms proposed by researchers have been used 

to simplify classification and solve feature selection issues for decades. In 

metaheuristic algorithms, exploitation and exploration are the two fundamental 

components that control the searching mechanism to obtain the optimal solution [12]. 
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In exploration, the optimiser must contain operators to explore the search space 

globally, and the motions are randomised as much as possible during this phase. On 

the other hand, exploitation is the process of investigating thoroughly the promising 

section of the search space found during exploration [13]. Some examples of 

metaheuristic optimisation algorithms are Gravitational Search Algorithm (GSA) [14], 

Ant Colony Optimisation (ACO) algorithm [15], Grey Wolf Optimiser (GWO) [16], 

Ant Lion Optimiser (ALO) [17], Particle Swarm Optimisation (PSO) [18], and Whale 

Optimisation Algorithm (WOA) [13]. Many researchers have employed these 

metaheuristic algorithms in various domains, such as solving power system problems 

in electrical engineering [19], applying multivariate data clustering [20], solving 

electromagnetic problems [21], performing data classification [22], and solving feature 

selection problems [11], [23], [24]. Among these algorithms, the WOA shows its 

strength in balancing exploration and exploitation, making it the top optimiser as 

compared with the other aforementioned metaheuristic algorithms [12], [23], [24]. 

The WOA is a swarm-based nature-inspired metaheuristic algorithm that 

mimics the biological behaviour of humpback whales to solve optimisation problems 

[13]. The algorithm consists of three parts, which are encircling prey, spiral updating 

of position, and searching for prey. The first two parts are implemented in the 

exploitation phase, while the latter part is done randomly in the exploration phase. The 

WOA is widely used in various areas, such as processing diabetes data [25], predicting 

traffic congestion rates [26], and optimising feature selection in medical datasets [23]. 

The WOA has proven itself to outperform the aforementioned algorithms in feature 

selection with a better ability to search for optimal features, leading to maximum 

classification accuracy [12]. 

It is worth noticing that researchers using wrapper-based feature selection with 

the WOA showed high execution times [23], [24], [27]. The WOA has also been 

applied in filter-based methods in various research works and was able to produce the 

best accuracy when 50% of features were omitted [11]. However, there are some 

drawbacks of the WOA yet to be solved. For instance, the performance of the WOA is 

affected by the convergence speed [12], [28]–[31], influencing the feature selection 

process by being unable to select the most relevant features or having too long of an 

execution time. Therefore, this research aimed to overcome the convergence speed 
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issue of the original WOA and improve the algorithm’s capability of selecting the most 

relevant features in a shorter execution time. 

1.2 Problem statement 

The convergence speed plays an important role in the performance of 

metaheuristic algorithms. It indicates how fast an algorithm converges to the optimum 

solution. If the algorithm converges to the optimum too quickly, it is likely that the 

best solution might be overlooked, which reduces classification accuracy [32]. 

Likewise, when the algorithm converges to the optimum too slowly, then the algorithm 

is not performing very well because it takes too long to find the best solutions. This 

needs to be avoided, especially when the data are huge.  

However, slow convergence speed issue is found in the literature for filter-

based feature selection methods with metaheuristic algorithms. For instance, it is worth 

mentioning that similar to other metaheuristic algorithms, WOA still face the slow 

convergence speed issue [28]. Based on the literature, a filter-based feature selection 

method using WOA with Mutual Congestion (WOA-MC) [11] has a slow convergence 

speed issue in HDD that is yet to be solved.  

In the WOA, the convergence speed depends on a single control parameter, a, 

which has a large effect on the WOA’s performance, such as balancing between 

exploration and exploitation [12], [29]. This is because a is used to generate the value 

of the coefficient vector, 𝐴, which then affects the equations of position updating in 

the phases of encircling prey, bubble-net attacking (exploitation), and searching for 

prey (exploration). The control parameter, a, affects the algorithm’s convergence in 

both local and global searching strategies. Its function determines the distance between 

search agents and the likelihood of position changing to look for solutions in the search 

space, which eventually results in the convergence speed of the algorithm [33]. As a 

result, the WOA has a slow rate of convergence throughout both the exploration and 

exploitation phases [30], [31]. Thus, the process of controlling the parameter needs to 

be improved in order to achieve a balance between these phases [12], [34]. 

As inspired by a Binary Grey Wolf Optimizer (BGWO) for wrapper-based 

feature selection [33], whereby the control parameter in BGWO was altered to linearly 
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increase to improve the slow convergence issue; it is suggested that the control 

parameter might be able to determine the convergence speed in filter-based WOA too. 

Hence, the issue of slow convergence speed in WOA is chosen in this study, by 

changing the control parameter to produce linearly increasing values over iteration. 

Therefore, in this study, a modified WOA (mWOA) was proposed to improve 

the convergence speed for better performance of the searching mechanism for filter-

based feature selection in HDDs. This proposed method was expected to perform 

better than the original WOA in balancing exploration and exploitation, as well as in 

improving the classification of HDDs. 

1.3 Objectives of study 

The aims of the research were twofold: to design an algorithm that selects the most 

relevant features in HDDs with a shorter execution time and to obtain a better 

classification performance by solving the convergence speed issue in the WOA. To 

fulfil the aims of the research, the following objectives were set: 

  

i. To propose a modified WOA (mWOA) by inversing the values of the control 

parameter, a, to tackle the slow convergence speed issue during exploration 

and exploitation. 

ii. To implement the mWOA as a filter-based feature selection method to select 

the most relevant features in benchmark medical HDDs. 

iii. To evaluate the performance of the mWOA against those of two other filter-

based feature selection methods, namely the original WOA and the GWO. 

1.4 Scope of study 

This research focused on filter-based feature selection using metaheuristic algorithms. 

The improvement made by the proposed mWOA was limited to solving the 

convergence speed issue of the original WOA. 
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In this study, medical HDDs were selected due to the increasing use of data 

mining in the area of medical diagnosis [35]–[39]. Four well-known benchmark 

medical HDDs of the binary class were used to validate the proposed mWOA in this 

study, namely Colon, Central Nervous System (CNS), GLI_85, and SMK_CAN_187 

[11], [40]. Binary-class HDDs were employed because the fitness function for filter-

based feature selection using the WOA required calculating the Euclidean distance 

between two classes, as adopted from [11]. 

To perform feature selection and classification, these four HDDs were tested 

using the WOA, the GWO, and the proposed mWOA. As suggested by Nematzadeh 

et al. [11], the feature selection discard rate was set to 50%; hence, only half of the 

features were selected by each algorithm. The performance of the proposed mWOA 

was compared against those of the WOA and the GWO using two evaluation criteria 

to prove the effectiveness of the modified control parameter. 

The first evaluation criteria was the execution time taken to select relevant 

features. Specifically, each algorithm’s best, average, and worst execution times were 

evaluated. Besides execution time, the performances of the algorithms in classifying 

the selected features were also evaluated. There were three classifiers used: Decision 

Tree, Naïve Bayes, and Support Vector Machine. These classifiers are commonly used 

for classifying medical HDDs [11], [40]. The classification performances of these 

classifiers were evaluated in terms of accuracy, specificity, and sensitivity. 

1.5 Significance of study 

Metaheuristic algorithms have contributed to various areas, such as solving problems 

in engineering, optimisation, and feature selection. Hence, using an efficient 

metaheuristic algorithm could significantly improve an application’s performance. 

The WOA, despite being one of the well-performing optimisation algorithms, has a 

limitation in obtaining a faster convergence speed, an issue that has been studied by 

previous researchers. Therefore, this study proposed a modified WOA (mWOA), an 

algorithm that is well balanced between exploration and exploitation phases and thus 

is able to achieve a faster convergence speed, by modifying the control parameter, a. 
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The proposed mWOA could be useful for researchers who are interested in integrating 

an optimisation algorithm in the mentioned areas. 

Data mining of HDDs relies on feature selection for dimensionality reduction 

to avoid the curse of dimensionality. Hence, an efficient approach for feature selection 

using metaheuristic algorithms could significantly improve the data mining of HDDs. 

In this study, the proposed mWOA was implemented as the filter-based feature 

selection in binary-class medical HDDs. The proposed mWOA was expected to select 

the most relevant features in a shorter execution time and obtain a better classification 

performance. This filter-based feature selection method could be useful for the feature 

selection of especially, but not limited to, medical HDDs. 

As reported in [41], in the year 2021, there are 48,639 new cancer cases 

recorded in Malaysia, and this number is expected to get doubled by the year 2040. 

Unfortunately, the oncology field in Malaysia is still relatively new as compared to 

other medical disciplines, and expert oncologists are only available in big general 

hospitals or private facilities in major cities [41]. Therefore, it would be useful if the 

proposed mWOA could perform feature selection on cancerous datasets which might 

increase the chances of getting a more accurate diagnosis. With the fast pace of data 

mining advancement in medical diagnosis, it is inevitable that the medical datasets are 

becoming bigger and bigger to hold more useful information. Therefore, tackling the 

curse of dimensionality in medical HDD with the proposed feature selection method 

is a prioritised task. This could contribute to researchers in the oncology discipline to 

obtain accurate medical diagnoses more efficiently. It is also hoped that the improved 

mWOA would be beneficial to select meaningful features with shorter execution time 

yet able to contribute higher accuracy while classifying tumor and normal genes in 

these datasets. 

1.6 Thesis outline 

This thesis dissertation is organised into five chapters, and each chapter covers several 

subsections. Chapter 1 introduced the background of the study and the problem 

statement that motivated the research work, as well as the objectives, scope, and 

significance of the study. 
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Chapter 2 presents the literature review covering high-dimensional data, 

feature selection, metaheuristic algorithms for feature selection, and a systematic 

review on feature selection using metaheuristic approaches in HDDs, as well as 

discussions on the Whale Optimisation Algorithm, the WOA for feature selection, the 

Grey Wolf Optimiser, and the research gap. 

In Chapter 3, the overall methodology to conduct the research, which involved 

data acquisition, mWOA formulation, feature selection, data classification, and 

evaluation metrics, was demonstrated. The discussion on the experiment setup for 

feature selection in MATLAB and for classification in WEKA is also covered in this 

chapter. 

In Chapter 4, the experiment results and findings are discussed. The chapter 

begins with comparisons of execution times for feature selection. The proposed 

mWOA’s best, average, and worst execution times were compared against those of the 

WOA and the GWO. Besides that, classification performances in terms of accuracy, 

sensitivity, and specificity are discussed in this chapter. 

Chapter 5 concludes the thesis, and the research’s novelty and contribution are 

explained. Suggestions and recommendations for future works are also provided in 

this chapter. 
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CHAPTER  2   

 

 

 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, related research works are discussed to give a deeper understanding of 

the background of this study. The topics of high-dimensional datasets (HDDs), feature 

selection, metaheuristic approaches, a systematic review of feature selection that used 

metaheuristic approaches in HDDs, the Whale Optimisation Algorithm (WOA), and 

the WOA’s applications are all included. The research gap and the justification for 

each decision are presented with solid evidence at the end of this chapter. 

2.2 High-dimensional datasets 

Over the past few years, quintillion bytes of data are created every day [42]. As a result, 

vast volumes of data with very high dimensions have arisen in various machine 

learning (ML) applications, including data mining [43]. Data mining often deals with 

a wide variety of distinct datasets. Due to the increasing number of data and complexity 

of datasets, extracting usable information from massive quantities of irrelevant 

information in datasets has become more important. 

Typically, datasets are in the form of matrices, where the row represents 

instances, while the column represents features [3]. HDDs are datasets that have a large 

number of features and are thus more complex. Low-dimensional datasets, in contrast, 
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have fewer features and are narrower in size. Figure 2.1 illustrates the visualisation of 

data dimension. 

Figure 2.1: Visualisation of data dimension 

The number of features and the sample size of a dataset are considered in order 

to categorise it as a high-sample-size dataset, or HDD. Letting m be the size of the 

sample and n as the number of features, a dataset has a high sample size if m > n. In 

other words, a dataset is considered as a high-sample-size dataset if its sample size is 

greater than the number of features. On the contrary, if its sample size is smaller than 

the number of features, the dataset is considered as an HDD. Nowadays, HDDs are 

becoming more prevalent in various areas, including text recognition, medical imaging, 

genetic microarrays, finance, face recognition, and chemometrics [3]. 
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