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ABSTRACT 

Direct Torque Control (DTC) is a method applied in Induction Motor (IM) 

drives to control the speed and torque of IM accurately and independently without a 

feedback signal. However, in Fast Fourier Transform (FFT) analysis, the Total 

Harmonic Distortion (THD) of the IM drives is high in the DTC method with a 

Conventional Inverter (CI). Therefore, a DTC IM drive with multilevel inverter (MLI) 

is proposed in this study with the aim of reducing THD without affecting the drive’s 

performance, and preserve good speed and torque response of IM simultaneously. The 

proposed DTC IM drive with MLI based THD minimization has several advantages 

over the DTC IM drive with CI, including higher generated output voltage with low 

distortion, operation under low switching frequency, and working with renewable 

energy. In order to validate the effectiveness of the proposed MLI based THD 

minimization in DTC IM drive, MATLAB Simulink is used to investigate the response 

of the IM drive and THD under different operating conditions. Furthermore, the result 

from MATLAB Simulink is further verified by using real-time simulation of Typhoon 

HIL 402. From this study, the proposed MLI based THD minimization DTC IM drive 

is able to reduce THD with a maximum of 14% in low speed operation, 11% in medium 

speed operation and 2% in high speed operation as compared to DTC IM drive with 

CI. Therefore, the proposed MLI based THD reduction DTC IM drive shows the 

effectiveness of the proposed MLI in reducing the THD of the IM drive. 
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ABSTRAK 

Kawalan tork terus (DTC) ialah kaedah yang digunakan dalam pemacu motor 

aruhan (IM) untuk mengawal kelajuan dan tork IM secara tepat dan bebas tanpa isyarat 

maklum balas. Walau bagaimanapun, dalam analisis transformasi fast fourier (FFT), 

jumlah herotan harmonik (THD) pemacu IM adalah tinggi dalam kaedah DTC dengan 

penyongsang konvensional (CI). Oleh itu, pemacu IM DTC dengan penyongsang 

berbilang peringkat (MLI) dicadangkan dalam kajian ini dengan tujuan untuk 

mengurangkan THD tanpa menjejaskan prestasi pemacu, dan mengekalkan kelajuan 

yang baik dan tindak balas tork IM secara serentak. Pemacu IM DTC yang 

dicadangkan dengan pengecilan THD berasaskan MLI mempunyai beberapa 

kelebihan berbanding pemacu IM DTC dengan CI, termasuk voltan keluaran terjana 

yang lebih tinggi dengan herotan rendah, operasi di bawah frekuensi pensuisan rendah 

dan berfungsi dengan tenaga boleh diperbaharui. Untuk mengesahkan keberkesanan 

pengecilan THD berasaskan MLI yang dicadangkan dalam pemacu IM DTC, 

MATLAB Simulink digunakan untuk menyiasat tindak balas pemacu IM dan THD di 

bawah keadaan operasi yang berbeza. Tambahan pula, hasil daripada MATLAB 

Simulink disahkan lagi dengan menggunakan simulasi masa nyata Typhoon HIL 402. 

Daripada kajian ini, cadangan pemacu DTC IM pengecilan THD berasaskan MLI 

mampu mengurangkan THD dengan maksimum 14% dalam operasi kelajuan rendah, 

11 % dalam operasi kelajuan sederhana dan 2% dalam operasi kelajuan tinggi 

berbanding dengan pemacu IM DTC dengan CI. Oleh itu, pemacu IM DTC 

pengurangan THD berasaskan MLI yang dicadangkan menunjukkan keberkesanan 

MLI yang dicadangkan dalam mengurangkan THD pemacu IM.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Electric motor drives have recently been recognized as one of the most 

promising motor systems due to their low energy consumption and reduced emissions. 

With some exceptions, the electric motor drive is the main source for the provision of 

mechanical energy in industry. Large energy efficiency potentials have been identified 

in electric motor drives with many saving options showing very short payback period 

and high-cost effectiveness. 

 An induction motor (IM) is an alternating current (AC) electric motor that is 

extensively used in industrial and household appliances that consume about 54% of 

the total consumed electrical energy [1]. IM consist of two parts which are the stator 

and rotor. The magnetic field of the stator winding induces the magnetic flux in the 

rotor to produce rotating torque on it. The rotor is connected to mechanical load 

devices by using the shaft [2]. The efficiency of IM is high when operated at rated 

speed and load torque [3]. However, for a variable load operation the application of 

the IM at rated flux will cause iron losses to increase excessively, thus total harmonic 

distortion (THD) will increase and efficiency will decrease dramatically. In order to 

reduce the iron losses, the flux level should be set lower than the rated flux, but this 

will increase the copper loss. Therefore, to optimize the efficiency of the IM drive 

system at partial load, it is essential to obtain the flux level that minimizes the total 

motor losses [1], [4]. 

 IM drives that have speed control has enormous use in the industry sector. This 

IM drives occupy more than 75% of the load in the industry of any country [2]. High 

performance IM drives application needs high efficiency, low cost and simple control 
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circuitry for the complete speed range [2].  There are two different approaches for IM 

drive efficiency optimization. The first approach uses analytical computation of motor 

losses to optimize the efficiency named as losses model controller method. This 

method has the main advantage that it does not require additional hardware but need 

accurate knowledge of motor parameters. The second approach will search the flux 

level gradually to obtain maximum efficiency that named as online or search efficiency 

optimization control method. This method has advantage that it is completely 

insensitive to motor parameters variation. 

 THD of IM drive is important since minimization of THD will increase the 

efficiency of the motor drive. THD variation analysis of current source inverter fed 

electric motor drive system during various fault conditions is carried out in [5] and it 

shows that THD increases during fault conditions. THD minimization can be done 

using various methods, out of which multi-level inverter (MLI) fed IM drive is 

preferably used to reduce THD in IM drive [6], [7]. This is because MLI are good 

power quality and higher voltage capability. MLI not only achieves a higher power 

rating but also enables the use of renewable energy sources [8].  

1.2 Problem Statement 

The reduction of energy consumption in IM through improvement in energy 

efficiency has become an important goal for energy saving. Basically, when an IM is 

operated at a rated condition, i.e. rated load torque and rated speed, the THD of the IM 

drive is minimum and efficiency of the motor is high and gives the best transient 

response. Unfortunately, when the motor operates at variable load, particularly at light 

load, the application of the motor at a rated operating point will cause the core loss to 

increase excessively, and this cause the THD to increase and efficiency to decrease 

dramatically due to the imbalance between iron and copper losses. Therefore, for a 

given operating point, the highest efficiency of IM can be achieved by minimizing 

losses by reducing magnetic flux or by programming the flux to obtain a balance 

between copper and iron losses. Direct torque control (DTC) is a control method that 

allows direct, accurate and independent control of the speed and torque of an induction 

motor without pulse encoder feedback from the motor shaft. Besides that, DTC control 

method also provides ease of implementation and control of IM at medium to high 

speed operation. 
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 In addition, THD is one of the major power quality issues occurring in most of 

the IM drives. The significant effect of harmonics on IM that caused heating due to 

iron and copper losses and harmonic currents in the rotor leads to rotor heating and 

pulsating or reduced torque. THD variation analysis of inverter fed IM drive during 

various fault conditions has been carried out in some previous research shows that 

THD increases during fault conditions with the efficiency of IM drive decrease 

simultaneously [4]. Minimization THD of IM drive had proven a significant 

improvement in the performance and the efficiency of the motor drive. THD of the 

motor drive can be reduced by implementing MLI in the motor drive system. MLI is 

an inverter that operates by using multiple lower-level direct current (DC) voltages as 

an input to generate an alternating voltage at the output to feed as input of the IM. 

Besides that, MLI is an inverter that uses a series of semiconductors to generate higher 

output voltage with a better harmonic spectrum and achieves higher voltage with the 

stepped waveform in the maximum available device rating, which has recently 

increased interest in research and industry applications. Due to the low electromagnetic 

interference (EMI), high efficiency, and low switching losses, MLI is suitable for high 

power motor drive applications. 

 Furthermore, conventional PI torque controller used in classic DTC IM drive 

is regularly indicated with poor load disturbance rejection and longer rise-time during 

start-up response. This is due to the PI controller gain cannot be set to a desired value. 

Neural network torque controller has been proposed to replace the conventional PI 

torque controller to overcome the poor performance of the PI torque controller. Neural 

network was inspired from the successful function of human brain and can be defined 

as a data processing system that consists of a large number of simple and highly 

interconnected processing elements named artificial neurons which compute values 

from input to solve wide variety of complicated problems. Neural network is chosen 

to proposed in this study due to the advantages of neural network has the ability to 

categorize data patterns, the capabilities to imitate approximate function and 

potentially parallel to complex hardware implementation. 
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1.3 Objectives 

This research embarks on the following objectives: 

i. To proposed MLI DTC IM drive to minimize and analyse the THD of IM drive 

systems for different operating condition. 

ii. To proposed an artificial neural network (ANN) torque controller to further 

minimize and analyse THD of IM drive for different operating condition. 

iii. To evaluate the effectiveness and robustness of the proposed MLI based THD 

minimization towards the drive system’s improvements and the system 

performances by Matlab Simulink and Typhoon HIL 402 verification.  

1.4 Project Scopes 

The scopes of this research project are as follows: 

i. Minimize the THD with the implementation of cascaded H-bridge MLI to 

improve the performance and power quality for DTC IM drive system by 

reducing rotor heating and improving the torque of IM in three different 

conditions which are the constant speed with a constant load, step speed with 

a constant load, and constant speed with step load. 

ii. Analyse THD of IM drive system with ANN torque controller to ensure the 

effectiveness of NN torque controller in reducing THD at any operating point 

over the entire torque and speed range as compared to proportional-integral 

(PI) torque controller. 

iii. Matlab Simulink and experiment with Typhoon HIL 402 is conducted to 

evaluate the effectiveness and robustness of the proposed THD minimization 

towards the drive system efficiency and system performance.  

1.5 Project Contribution 

In this master research project, the aim is to reduce the THD of DTC IM drive with a 

conventional inverter (CI) since THD minimization can increase the drive efficiency. 

To overcome the THD of the IM drive with CI, cascaded H-bridge MLI is choose to 

use in this project to reduce the THD of the IM drive at three different condition 
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including the constant speed with a constant load, step speed with a constant load, and 

constant speed with step load. The effectiveness and robustness of MLI in reducing 

the THD of IM drive are observed and analyze by using software simulation with 

Matlab Simulink and experiment with Typhoon HIL 402 and a comparison is made 

between DTC IM drive with CI and proposed MLI based THD reduction DTC IM 

drive. Besides that, the project is further conducted by changing PI torque controller 

of the proposed MLI based THD reduction DTC IM drive to NN torque controller to 

observe and analyze the torque performance and THD minimization of the DTC IM 

drive. 

1.6 Report Outlines 

This project is divided into five main chapters. Firstly, chapter 1 is the introduction of 

this project that include the introduction, problem statement, objectives, project 

contribution and project scope. Secondly, chapter 2 presents of literature review that 

discusses and reviews the previous studies and theories related to this project. This 

chapter also describe the fundamental of IM, variable frequency drive (VFD) with 

scalar control and vector control, THD and ANN. Thirdly, chapter 3 discusses the 

details of the methodology which consists of the problem formulation as well as the 

proposed MLI based DTC IM drive. This chapter also describes the hardware 

development of the proposed MLI based DTC IM drive with the use of Typhoon HIL 

402. Fourthly, chapter 4 presents the result and analysis of the DTC IM in terms of 

THD minimization at different speed operation done in Matlab Simulink and Typhoon 

HIL 402. Lastly, chapter 5 concludes the whole project in summary and a 

recommendation is written for the purpose of improvement and suggestion for the 

upcoming research.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Basically, motor can be classified into two types, namely AC motor that powered by 

alternating current and DC motor that powered by direct current. Both AC and DC 

motor used electrical current to generate rotating magnetic field, in turn, generate 

rotational mechanical force in the armature. However, AC motors are generally more 

powerful than DC motors because they can generate higher torque by using more 

powerful current. 

Figure 2.1 shows the overall IM control system that generally consists of four 

main parts: IM, inverter, control system and load. IM works by converting electrical 

energy to mechanical energy, which is widely used in numerous applications such as 

industrial sectors, electric home appliances, electric vehicles, etc., accounting for 

approximately 60% of the total industrial electricity [9], [10]. Furthermore, IM has 

several advantages, including being easy to maintain due to its simple structure, 

reliability, efficiency maximization, and cost minimization [11], [12]. Therefore, IM 

has been used to replace DC motors due to DC motors are difficult to maintain, corrode 

and spark when rotating [12]–[14].  However, there is difficulty in controlling the 

speed, torque and flux of IM due to the complex design of IM and the nonlinear model 

[15], [16]. Therefore, scalar and vector control are two major methods developed to 

control the IM [17], [18]. 
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Figure 2.1: Architecture of the IM control system [19] 

From several research studies of the scalar control method by researchers, the 

scalar control method has the advantages of its simple structure, cost minimization, 

simple and easy design, and low steady-state error [8], [12], [15], [17], [20]. Moreover, 

scalar control method performs well in controlling medium to high speed without IM 

parameters [21]. Research studies claim that many researchers used scalar control 

method in controlling IM (using digital-signal-processing (DSP)) [20], single-phase 

IM [22], five-phase IM [23] and permanent magnet synchronous motors (using DSP) 

[24], [25]. 

 Conversely, vector control method with high capability in controlling IM over 

scalar control method is a frequently used control scheme in previous research studies 

[23], [26]. The working principle of vector control method in controlling IM is 

obtaining the magnitude of amplitudes and frequency voltages. Thus, the vector 

control method controlled the position of flux, voltage and current vector. However, 

IM controller increase in difficulty and complexity with vector control method due to 

the coupling between electromagnetic torque and flux, and it also affected by the 

sensitivity of IM parameter. The coupling between the electromagnetic torque and flux 

can be solved by field-oriented control (FOC) and DTC [23], [25]. Blaschke proposes 

two control techniques in FOC namely direct field-oriented control (DFOC) in 1972 

[27], and indirect field-oriented control (IFOC) proposed by Hasse in 1968 [27]. The 

main objective of both direct and indirect FOC is to obtain the torque and flux 

decoupling even with their complex mathematical equation for IM. 

2.2 Variable Frequency Drives (VFDs) 

Several control method has been focused on the control of IM before the invention of 

variable frequency drive. In 1946, the performance of a transient IM was investigated 

Reference 
signal

Control System Inverter IM Load

DC supply
Voltage and 

current sensors

Speed 
sensors
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using analog computer is done by Charp and Weygandt during a survey of IM control 

development [19]. Further in 1956, silicon-controlled rectifier was invented by Bell 

Laboratories for motor control [19]. Following in 1959, new analysis in a study the 

transient IM of rotating frames was performed by Kovacs and Racz [19]. During 

1960s, semiconductor revolution was happening with the development of power 

electronic devices to support the design of several power electronic converters and 

switching techniques used to control IM drive. Accordingly, the design and 

development of VFD methods in numerous research bodies for control purposes. IM 

was investigated in terms of speed control improvement, strategy implementation for 

motor control, and energy efficiency maximization. The challenging issues of IM 

control for nonlinear dynamic systems such as changes in resistance value due to 

heating of rotor resistance, and difficulties in measuring rotor flux and currents should 

be addressed. VFD can be divided into two main methods, which are scalar control 

and vector control methods as shown in Figure 2.2, according to IM speed, torque, 

flux, voltage, and current control [28], [29].  

 

Figure 2.2: Categorization of variable frequency drive methods 

2.2.1 Scalar Control 

V/f control is a type of scalar control that was introduced in 1960 for IM control which 

Variable Frequency 
Drives

Scalar Control

V/f control

Vector Control

Field Oriented 
Control (FOC)

Direct Torque 
Control (DTC)
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