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ABSTRACT 

 

 

 

 

The development of Next-Generation High-Speed Trains (NG-HST) made of 

lightweight materials is a challenging task for the transport industry. With the 

increasing speed and decreasing structural mass of high-speed trains, it raises concerns 

about the effects of strong crosswinds on their aerodynamics and train stability. 

Understanding the aerodynamic characteristics is a requirement for train operational 

safety analysis of the high-speed train under sudden crosswind. Thus, the goal of this 

thesis is to investigate the aerodynamic loads and unsteady flow structure around a 

NG-HST subjected to crosswind using computational fluid dynamics (CFD) analysis. 

A hybrid Detached eddy simulation (DES) was used to resolve incompressible flow 

around the train. Based on the height of the train model and freestream velocity, the 

Reynolds number (Re) for the simulation was 1.3 × 106. The simulation was run in 

different conditions such as crosswind angles of 15°, 30°, 45° and 60°, no crosswind, 

six Re, and steady and transient crosswind. Later, the simulation was compared with 

the wind tunnel from the previous study for validation purposes. In the results, 

according to power spectral density (PSD) analysis, increasing the Re increased the 

turbulence intensity of the wake, which gradually dissipated as the distance from the 

train increased. In terms of transient responses, even low-velocity wind had a very high 

impact on the aerodynamic loads of the NG-HST. For example, Cs value changes were 

166%, 183%, and 190% higher during transient loads for 15m/s, 25m/s, and 35m/s, 

respectively, compared to normal conditions. In addition, the Cl and Cs with Croll and 

Cpitch provide a strong justification for the running safety subjected to transient 

crosswind. On the other hand, the vortex structure formation is relatively complex and 

unsteady at 13° yaw angles for transient as compared to the vortex formation observed 

for the steady crosswind. The findings of the study may be used to better understand 

the flow characteristics in the wake of NG-HSTs for future development. 
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ABSTRAK 

 

 

 

 

Pembangunan Next-Generation High-Speed Trains (NG-HST) yang diperbuat 

daripada bahan ringan adalah suatu cabaran bagi industri pengangkutan. Dengan 

peningkatan kelajuan dan penurunan jisim struktur keretapi berkelajuan tinggi, 

sebaliknya, menimbulkan kebimbangan mengenai kesan angin lintang yang kencang 

terhadap aerodinamik dan kestabilan keretapi. Memahami ciri-ciri aerodinamik 

diperlukan untuk menjalankan analisis keselamatan operasi keretapi berkelajuan tinggi 

di bawah angin lintang yang mengejut. Hasilnya, matlamat tesis ini adalah untuk 

menyiasat beban aerodinamik dan struktur aliran udara di sekeliling NG-HST yang 

dikenakan angin lintang menggunakan analisis Computational fluid dynamics (CFD). 

Hibrid detached eddy simulation (DES) digunakan untuk menyelesaikan aliran tak 

mampat di sekeliling keretapi. Berdasarkan ketinggian model kereta api dan halaju 

aliran bebas, nombor Reynolds (Re) untuk simulasi ialah 1.3 × 106. Simulasi 

dijalankan dalam beberapa keadaan yang berbeza seperti sudut angin lintang 15°, 30°, 

45° dan 60°, tiada angin lintang, enam Re, angin lintang malar dan sementara. 

Kemudian, keputusan dibandingkan dengan data terowong angin daripada kajian lepas 

untuk tujuan pengesahan. Menurut analisis power spectral density (PSD), dengan 

meningkatnya Re, ia akan meningkatkan keamatan turbulensi bangun, yang secara 

beransur-ansur hilang apabila jarak dari keretapi meningkat Dari segi tindak balas 

sementara, angin halaju rendah pun mempunyai kesan yang sangat tinggi terhadap 

beban aerodinamik NG-HST. Selain itu, Cl dan Cs (166%, 183%, dan 190% lebih tinggi 

semasa angin sementara) dengan Croll dan Cpitch memberikan justifikasi yang kukuh 

untuk keselamatan operasi keretapi yang tertakluk kepada angin lintang sementara. 

Pembentukan struktur pusaran adalah agak kompleks dan tidak tetap pada sudut angin 

lintang 13° untuk keadaan angin sementara, berbanding angin lintang yang berterusan. 

Dapatan kajian boleh digunakan untuk lebih memahami ciri-ciri aliran susulan NG-

HST untuk pembangunan masa hadapan. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

 Research background 

 

 

In many countries around the world, high-speed trains (HSTs) are regarded as a quick, 

safe, and comfortable mode of transportation [1]–[3]. HSTs would be far more 

efficient and cost-effective than air or automobiles for trips of 100-1000 km, yielding 

significant cost, fuel, and time savings. Consequently, the demand for this mode of 

transportation has been increasing rapidly in recent years. Though, there are a number 

of issues that may cause concern in the coming years [4]. These issues are including a 

reduction in carbon emissions, extreme weather events, climate change and the 

demand for high-speed and lightweight structures for vehicles (Figure 1.1). 

 There will be rising demand for a reduction in carbon-based transportation 

energy usage, both due to supply concerns and the need to reduce carbon production 

to counteract the effects of climate change [4]. Secondly, climate change will have an 

increasing impact on transportation networks, particularly in terms of the frequency of 

extreme weather events. Finally, vehicles will become lighter as new materials are 

developed with higher speeds. This shows the future challenges and opportunities in 

the development of the railway industry. 
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Figure 1.1: Overview of the background study  

More research must be conducted from both a technical and non-technical 

perspective to address the issues that have arisen regarding the future development of 

high-speed train transportation, Currently, the development of next-generation high-

speed trains (NG-HST) made of lightweight materials is a challenging issue for the 

train transportation industry. Lightweight trains minimize axle loads, which saves 

money by lowering rail track maintenance costs and the energy required to drive 

vehicles [5], [6]. As a result, travel time can be significantly reduced, and the train can 

operate at optimum efficiency [7]. 

However, the increasing speed and decreasing mass of HSTs, on the other 

hand, raises concerns about the effects of extreme weather events such as sudden wind 

on their aerodynamics and train stability. It is especially significant when there is a 

strong crosswind [8]. Figure 1.2 depicts some train accidents due to overturning under 

crosswind conditions. Although such accidents are uncommon, they show the 

possibility and relevance of knowledge of the unsteady flow structures and the 

resulting acting forces on the surface of the trains. In addition, understanding the 

aerodynamic characteristics is a requirement for running a safety analysis of the NG-

HST under transient crosswinds.  
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Figure 1.2: Examples of train accidents caused by strong crosswinds [9], [10] 

There are several techniques available for understanding the aerodynamic 

performance of a high-speed train, including full-scale experiments, computational 

approaches using computers, and physical modeling [11], [12]. Each method has 

advantages and disadvantages. In particular, the computational fluid dynamics (CFD) 

technique has gained popularity in recent years due to its ability to calculate full fluid 

flow around the train, velocities, and pressures. It is anticipated that CFD capabilities 

at a level of reliability are sufficient to eliminate the need for physical model tests in 

many areas.  

A number of suitable modeling approaches are generally used, including steady 

and unsteady Reynolds-Averaged Navier–Stokes (RANS) techniques, large eddy 

simulation (LES), and detached eddy simulation (DES) to study the aerodynamic 

performance, including aerodynamic loads and flow characteristics of the trains. 

RANS models are widely used in train aerodynamics to study a variety of problems, 

but they are unable to calculate where there is a very large unsteady condition [13]. On 

the other hand, LES can predict instantaneous flow characteristics and resolve 

turbulent flow structures [14], whereas RANS methods provide averaged results. 

However, LES is computationally expensive as it solves all the large eddies. At this 

point, one of the promising solutions is DES which was proposed by Spalart in 1997 

[15]. When compared to RANS, DES improves accuracy when massive separation 

exists, but at a lower computational cost than LES. 
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The ongoing development of NG-HST, HST, and regional trains (RT) with 

moderate to high operating speeds, particularly for intercity transport, has quickly 

become the highlight of alternative public transportation technology. At the same time, 

safety is also becoming an issue for this industry. A comparison among three types of 

trains is shown in Table 1.1. The main differences are speed, weight in terms of 

structure, and the noise generated by the train. This refers to the advantages of next-

generation trains. 

 

Table 1.1: Comparison of different types of train 

 
Characteristics NG-HST [16] HST [17] RT [17] 

Speed More than 400 km/h 
Varies between 250 to 

350 km/h 

Between 100 km/h 

200 km/h 

Coach length 20m Up to 27m Up to 25m 

Passenger capacity 79/coach 55/coach Up to 120 

Weight (Structure) Light Moderate Heavy 

Power source 

Inductive power 

transfer from the track 

to receivers distributed 

over the length of the 

train 

Electric power from 

overhead wires, using a 

pantograph 

Diesel 

Noise 
Less Noise as no 

pantograph 
Moderate High 

Wheel system 
Two single-wheel 

pairs per coaches 
Double wheel pairs Double wheel pairs 

Energy Energy efficient - - 

Coupling Function 
Remote, contactless 

coupling functionality 
Scharfenberg coupler Varies 

 

 Some recent studies has been conducted on the simplified model of NG-HST 

in terms of flow over the train [18], crosswind stability on the front car and a partial 

section of the middle car [19], performance of different turbulence models [20], 

transient pressure around HST [21], and the effect of steady crosswind [22] and so on. 

The results showed the formation of a large vortex system at the leeward side of the 

train, which primarily causes the overturning force and moment. Furthermore, the 

laminar flow at the train's nose would convert to a fully turbulent flow in the wake 

zone. It has also been discovered that crosswind situations cause an increase in 

pressure on the windward side. Force coefficients, on the other hand, increase with 

both wind speed and train speed, though the change is not linear in a steady crosswind. 

A preliminary review of the literature reveals that a very small number of 

research has been conducted on the NG-HST trains. It implies the importance of 
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performing thorough research on the aerodynamic performance of NG-HSTs subjected 

to crosswind conditions in order to improve their crosswind stability. 

 

 

 Problem statement 

 

 

The development of new materials introduced lightweight structural designs for 

different railway applications. The lightweight structure of the NG-HST reduces axle 

loads, which saves money by lowering rail track maintenance costs and the amount of 

energy needed to drive vehicles. On the other hand, the issue of sudden extreme 

weather events is becoming unpredictable due to climate change. Climate change-

induced increases in the intensity and frequency of extreme weather events can have a 

significant influence on railway networks. As a result, increasing speed to reduce travel 

time and the lightweight structural design of the NG-HST raises concerns about the 

effects of crosswinds on train aerodynamics.  

 A strong wind gust (also referred to as transient crosswind) can result in a large 

unsteady flow structure around a moving train, resulting in sudden changes in 

aerodynamic forces when wind speed changes with respect to time. Wind-induced 

derailment becomes more likely as train speed and vehicle area profile normal to wind 

direction increase. Moreover, the increased height (as the train double-deck type) adds 

a significant lateral force increase and the resulting rolling moment to the other 

associated issues such as forces on the surface [23]. Even different wind conditions are 

important factors in determining the risk of a train overturning and derailment [24].  

 Wind gusts are naturally diverse in terms of shape, frequency, features, and 

intensity, and can be classified as deterministic or stochastic. However, they are 

typically idealized as deterministic gusts, which are then layered into wind turbulent 

oscillations [25]. A deterministic wind gust is a variation in wind velocity that is 

specified by a simple, generally mathematical, function of time. This type of 

fluctuation happens in the same direction as the longitudinal gust [26]. It was 

discovered that side force is mostly determined by upstream wind velocity fluctuations 

[27] and lift coefficient by free-stream turbulence level [28]. This demonstrates the 

transient response of wind gusts on vehicles' aerodynamic forces. 

 A number of research has been undertaken to understand the flow structure 

around HST under crosswind conditions. The details can be found in the ref. [12], 
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[29]–[32]. Due to the difficulties of simulating transient winds, they commonly 

simulated their cases using a crosswind at a steady wind velocity. However, in reality, 

the wind velocity varies significantly and is obviously not constant or steady as 

mentioned earlier. Thus, it is one of the aspects that need to be investigated whether or 

not steady wind loads are feasible to get accurate aerodynamic forces and flow 

structures. 

 Moreover, the flow structure at the wake has significant effects on the trackside 

workers, passengers and nearby infrastructure. There are a number of parameters that 

affect the flow structure at the wake, Re is one of them. Nowadays most of the research 

on the aerodynamics of HSTs uses a scaled model to reduce the computational cost, 

which results in a much lower Re than the corresponding full-scale test. If Re is large 

enough the effect on the aerodynamic parameters is relatively small, but it is often 

difficult in the scaled model test. With the unique shape and when operating at a 

different speed, there may be some unclear differences. As a result, it is essential to 

investigate the effects on the wake flow structure in different Re. 

 The above discussion also demonstrates the necessity of constructing a 

thorough aerodynamic characterization and understanding of the factors that influence 

how the flow around an NG-HST evolves. In addition, a comparison between the 

effects of different types of wind loads on train aerodynamics should be considered. 

 

 

 Research objectives 

 

 

The overall aim of the study is to investigate the aerodynamic performance around a 

next-generation high-speed train subjected to transient crosswind conditions using 

CFD analysis. The following are the objectives of this research: 

(i) To examine the effects of different Reynolds numbers on the flow structure 

(ii) To investigate the aerodynamic characteristics and time-dependent flow 

physics around the NG-HST subjected to transient crosswind 

(iii) To analyze the effects of steady and transient crosswind conditions on the 

aerodynamic performance 
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 Research scope 

 

 

The current research concentrated on the following activities: 

(i) A numerical study was carried out using DES on a simplified NG-HST model 

with three cars (front, middle, and rear) to compare it to the original version of 

the train [33]. 

(ii) All the simulations were run in static condition as moving condition has 

negligible impact on the aerodynamic loads and overall flow structure [34]. 

(iii) Based on the height of the train model and freestream velocity, the Reynolds 

number (Re) for the simulation was 1.3 × 106. 

(iv) The aerodynamic forces considered were forces: drag, lift and side; and 

moments: rolling, yawing and pitching.  

(v) To understand the effects of different Re, six Re ranging from 7.42 × 105 to 

1.62 × 106 were used to examine the characteristics of vortex structures, 

streamline distributions, velocity characteristics, and pressure characteristics in 

the wake region of an NG-HST. 

(vi) Three simplified wind velocity profiles were considered to simulate the 

transient wind with the maximum velocity of 15 m/s, 25 m/s, and 35 m/s, 

respectively. 

(vii) To understand the aerodynamic characteristics, four crosswind angles were 

considered based on ref. [35] i.e. 15°, 30°, 45° and 60°. 

(viii) For the grid independence study, Richardson extrapolation and the grid 

convergence index were utilized. 

(ix) For validation, the aerodynamic load was compared with wind tunnel data from 

the German Aerospace Centre (DLR) [36].  

Figure 1.3 represents the scope of the current research, which focuses on the 

aerodynamic characteristics of a NG-HST. Among other extreme weather conditions, 

the influence of crosswind on the NG-HST has been studied and investigated using 

CFD simulation and the simulation was validated using a previous study.  
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Figure 1.3: An overview of the current study's research scope 

 

 

 Significance of the study 

 

 

(i) The proposed study will provide an inclusive analysis of flow physics, 

highlighting different characteristics of flow behavior and occurrences with 

respect to the two flow regimes (i.e., the lower degree of yaw angle and the 

higher degree of yaw angle) near a train vehicle under the influence of the 

crosswind. 

(ii) The research findings are expected to fill gaps in the scope of the train vehicle 

study. Aerodynamic forces are one of the two stages of achieving safety 

guidelines for train operation. Information on the aerodynamic forces obtained 

from simulation results may provide valuable technical information to the 

community, particularly the railway industry. 

(iii) The current NG-HST research will contribute to a better understanding of the 

flow field under the influence of transient crosswinds. The expected outcome 
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