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ABSTRACT 

Inspection of structures is a regular practice in many industries to determine the 

condition of the structure in terms of safety and performance. Traditionally, inspection 

operations were performed by qualified personnel to evaluate the condition of the 

structure and to determine locations requiring maintenance. However, manual 

inspection is costly, time-consuming, and may endanger the lives of the inspectors 

especially in radioactive and poisonous environments. Alternatively, robotic 

inspection provides a faster, safer, and more cost-effective alternative to human 

inspection; however, robots are usually limited in their operational domains. Drones 

and other airborne vehicles are designed for aerial operation, while underwater robots 

are designed to inspect submerged structures. Additionally, drones, water-surface, and 

underwater robots are all constrained by their tether or onboard power source. In this 

work, a teleoperated soft continuum manipulator is implemented, capable of inspecting 

tall, submerged, and partially submerged structures for prolonged time periods. The 

manipulator consists of a suspended flexible arm, a part capable of sliding along the 

arm (referred to as an Arm Constrainer and Tendon Router ‘ACTR’), and a rotatable 

upper base. Tendon actuation is used to provide high motion resolution as well as the 

ability to locate the driving motors remotely with respect to the actuated parts (arm 

and ACTR). Thus, allowing the manipulator arm to be placed in different 

environments without affecting the actuators or controlling circuitry. The results of the 

lab experiments illustrate the manipulator’s ability to inspect tall structures with sub-

millimeter vertical motion resolution. The experimental results also validated the 

manipulator’s ability to inspect the different parts (above and below water) of a 

partially submerged tall structure, represented by an Aluminum pole. Additionally, the 

manipulator’s modular design facilitates the replacement of its arm with another of 

different material and geometry, allowing it to be used in different environments. In 

comparison to soft continuum robots and manipulators (SCRaMs), this manipulator 

employs fewer actuators than multi-segment SCRaMs and covers a larger workspace 

than fixed-length single-segment SCRaMs. 
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ABSTRAK 

Pemeriksaan struktur merupakan amalan biasa yang dilaksanakan di pelbagai industri 

bagi menentukan tahap keselamatan dan keupayaan struktur. Pemeriksaan robotik 

menyediakan kaedah yang lebih pantas, selamat dan menjimatkan kos sebagai 

alternatif kepada pemeriksaan yang dilakukan oleh individu; walau bagaimanapun, 

robot biasanya terhad kepada ruang domain operasi. Dron dan kenderaan udara direka 

untuk operasi pemeriksaan struktur tinggi, manakala robot bawah air direka untuk 

memeriksa struktur di dalam air. Selain itu, dron, robot terapung dan robot bawah air 

semuanya dikekang oleh penambat dan/ atau sumber kuasa dari kapal mereka. Dalam 

kajian ini, pemanipulasi kontinum lembut kawalan jauh digunakan, ianya mampu 

memeriksa struktur yang tinggi, kedalaman, struktur yang tenggelam dan separa 

tenggelam untuk tempoh masa yang panjang. Pemanipulasi ini terdiri daripada lengan 

fleksibel yang tergantung, bahagian yang mampu meluncur di sepanjang lengan 

(dirujuk sebagai ACTR), dan tapak atas yang boleh diputar. Sistem penggerakan 

tendon digunakan untuk memberikan resolusi gerakan yang tinggi serta kebolehan 

untuk menempatkan motor pemanduan dari jauh berdasarkan dari bahagian yang 

digerakkan (lengan dan ACTR). Oleh itu, lengan pemanipulasi dapat diletakkan dalam 

persekitaran yang berbeza tanpa menjejaskan penggerak atau litar kawalan. Keputusan 

eksperimen makmal menggambarkan keupayaan pemanipulasi untuk memeriksa 

struktur tinggi dengan resolusi gerakan menegak dalam sub-milimeter. Keputusan 

eksperimen juga mengesahkan keupayaan pemanipulasi untuk memeriksa bahagian 

yang berbeza (di atas dan di bawah air) struktur tinggi separa tenggelam, yang 

diwakilkan oleh tiang Aluminium. Tambahan lagi, reka bentuk pemanipulasi secara 

modul memudahkan penggantian lengan dengan bahan dan geometri yang berlainan 

membolehkan ia digunakan dalam persekitaran yang berbeza. Berbanding dengan 

robot dan pemanipulasi kontinum lembut (SCRaM), pemanipulasi ini menggunakan 

sedikit penggerak berbanding SCRaM berbilang segmen dan mencakupi ruang kerja 

yang lebih besar berbanding SCRaM segmen tunggal dengan panjang yang tetap.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background of the study 

Inspection operations were conducted by humans since they started life on 

earth. From inspecting their early tools to ensure their effectiveness to the caves they 

used for shelter, inspection was part of the daily life activities of early humans. 

 

The operation of inspection continued throughout history, with the invention 

of new tools to better inspect the world around us. From early telescopes to 

microscopes, inspection devices, and tools helped humans in the discovery of new 

frontiers in science and technology. As humanity progressed and new tools were 

invented, the industry started an increasing trend of shifting from human-based to 

machine-based inspection. This shift is largely due to the ability of robots to reach 

difficult locations, or withstand extreme environmental conditions, thus relieving the 

stress and difficulty of conducting inspection operations by qualified personnel. In 

today’s world, robots are used in architecture to inspect tall structures or used 

underwater for inspecting submerged objects. Figure 1.1 shows robots used for 

inspecting tall towers and underwater structures. 

 

However, robotic inspection operations are limited by the ability of the 

machines performing these operations. Mobile robots inspecting tall structures are 

limited by their fuel or battery life, as well as surrounding conditions at the inspection 

site, such as extreme temperatures or excessive radiation. Additionally, robots 

inspecting underwater objects are limited by the depth they can reach, and the length 

of their operation time. 
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(a) (b) 

Figure 1.1: Robots in inspection operations. a) Drone [1].  b) Underwater robot. [2]. 

Stationary robots and manipulators, such as the ones shown in Figure 1.2 do 

not use batteries, hence have an unlimited operation time. However, these robots and 

manipulators have a limited reach and are mostly suitable for inspecting objects in 

their vicinity. Scaling up rigid robots and manipulators to reach and inspect large 

structures increases their weight and energy requirements, making them costly, and 

difficult to relocate to different sites. 

 

  
(a) (b) 

Figure 1.2: Stationary robots and manipulators. a) A robot for inspecting items [3].  

b) Industrial manipulators [4]. 

Soft continuum robots and manipulators (SCRaMs) have elongated flexible 

bodies and can extend to cover large areas as shown in Figure 1.3(a). However, these 

are suitable for the exploration and inspection of ground-based objects and landscapes. 

Vertically aligned SCRaMs, such as the one shown in Figure 1.3(b) can be used for 

inspecting tall structures. However, their body’s thick cross-section limits their 
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curvature angle and makes it difficult to reach and inspect all locations within a tall 

structure. Additionally, some of the actuators used by SCRaMs either have low 

accuracy, such as fluidic and shape memory alloy (SMA) actuators or employ high 

voltages to operate, such as dielectric elastomer actuators (DEA), making them 

impractical for field operations. 

 

 

 
(a) (b) 

Figure 1.3: Robots in exploration and inspection. a) An extendable soft continuum 

robot [5].  b) A soft continuum manipulator [6]. 

 To solve these problems, an inspection robot or manipulator is required for the 

purpose of inspecting tall and partially submerged structures, as well as withstanding 

extreme conditions, such as radiation, pressure, and temperatures. The designed robot 

or manipulator should address the constraints of current systems in terms of tethering 

and on-board power limitations. 

 

This work presents the design, fabrication, and testing of a teleoperated 

manipulator that can be easily rescaled to inspect taller structures, deeper waters, and 

withstand different environmental conditions while having a relatively high motion 

accuracy. Additionally, the manipulator has the ability to perform specific operations 

on any desired location through end effectors located at its tip. 
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1.2. Problem Statement 

Teleoperated robots and manipulators are devices that are controlled by a 

human user to perform one or more tasks. Many types of teleoperated robots are used 

for inspection operations. Some are intended for land structures and others for 

underwater environments. Although all of these robots are designed to perform their 

tasks efficiently, each type has certain limitations making it unsuitable for inspecting 

tall and partially submerged structures for prolonged periods of time. 

 

Teleoperated robots used for the inspection of tall structures on land conduct 

their operation by one of several methods, such as cable suspension, climbing the 

structure’s walls, or flying about the structure [7]. However, these approaches are 

constrained by several factors, such as the limited operation time dictated by the 

robot’s power source, as well as environmental conditions such as temperature and 

radiation. Teleoperated robots intended for underwater exploration are limited by the 

depth they can reach and the length of their operation time. These factors constrain 

their ability to perform inspection operations for prolonged periods or reach further 

and deeper locations [8]. Additionally, teleoperated robots designed for inspecting 

terrestrial structures are generally unsuitable for underwater operation, and vice versa. 

This results in requiring two robots or vehicles for inspecting partially submerged 

structures, such as offshore wind turbines, oil rigs, bridge pylons, and others. 

 

Soft continuum robots and manipulators can be used to overcome the 

aforementioned constraints but suffer from different limitations. Horizontally aligned 

SCRaMs, such as [5] and [9] are suitable for exploring surface objects and structures 

but are unsuited for inspecting tall structures. SCRaMs, such as [6], [10], and [11] can 

be used for inspecting tall structures, however, the fluidic and SMA actuators used by 

[6] and [10] are difficult to achieve precise control, and the DEA actuator employed 

by [11] requires a high operating voltage making it dangerous to deploy in the field. 

SCRaMs employing tendon actuation, on the other hand, such as [12] and [13] have  

higher accuracy and are safe to be used in the field, however, the SCRaM’s thick cross-

section makes it difficult to reach and inspect all locations of the tall structure. 

Although SCRaMs, such as [14], [15], and [16] attempt to overcome this problem 
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using a multi-segmented body, they employ numerous actuators, and are thus more 

costly and complicated to control. 

To summarize, the problem is the absence of a robotic system that can be used 

to inspect tall and partially submerged structures for prolonged periods of time. Mobile 

robots suffer from the limitation of onboard power sources, stationary rigid 

manipulators are unsuitable for inspecting tall structures, while stationary soft robots 

and manipulators are not optimized for inspecting tall and partially submerged 

structures. 

Thus, the aim of this work is to overcome the limitations of current robots and 

manipulators for structural inspection through the development of a robotic system 

capable of inspecting tall and partially submerged structures, with a relatively high 

motion resolution, and in different environmental conditions. 

1.3. Research Objectives 

Based on the research aims, this work seeks to accomplish the following 

objectives: 

1. To design a teleoperated soft manipulator for inspecting tall and partially

submerged structures (such as chimneys and offshore wind turbines).

2. To develop the manipulator through fabrication and assembly. Fabrication of

the designed parts through 3D printing, and assembly of these parts with off-

the-shelf components to produce the full manipulator.

3. To validate the manipulator’s functionality through its ability to inspect tall

structures and underwater objects.
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