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ABSTRACT 

Decisions and control of stochastic dynamical systems are challenging tasks. This 

thesis explores the use of the stochastic approximation (SA) approach to solve discrete-

time nonlinear stochastic optimal control problems in engineering. In the presence of 

Gaussian white noise, the state dynamics become fluctuate, uncertain and incomplete 

information. So, optimizing and controlling such dynamic systems will not provide a 

satisfactory solution. Therefore, the SA for state-control (SASC) algorithm is proposed 

to associate state estimation and control law design for solving the control problem. 

Then, the optimal solution of the extended Kalman filter (EKF) is compared as a 

benchmark solution. Moreover, the variants of the SA approach, namely SA with 

momentum (SAM), Nesterov accelerated gradient (NAG), and adaptive moment 

estimation (Adam), are applied in the SASC algorithm for better iterations. For 

illustration, engineering applications, which are inverted pendulum-cart system, four-

tank system, and Duffing electrical oscillator, are studied. The simulation results 

showed that trajectories of state and output are estimated close to actual trajectories 

using the optimal control law designed. From these results, the tilt angle and the cart 

position were regulated around steady states through the optimal external force. In 

addition, the liquid levels in four tanks were optimally estimated upon the optimal 

voltages of pumps. Further, the flux and voltage of the nonlinear inductor were 

optimally calculated under the sinusoidal source voltage. The efficiency and accuracy 

of the SASC algorithm with Adam are highly recommended. In conclusion, the SASC 

algorithm is applicable for solving discrete-time nonlinear stochastic optimal control 

problems effectively. 
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ABSTRAK 

Pembuatan keputusan dan kawalan bagi sistem berdinamik stokastik adalah tugas yang 

mencabar. Tesis ini meneroka penggunaan kaedah penghampiran stokastik (SA) untuk 

menyelesaikan masalah kawalan optimum stokastik tak linear masa diskrit dalam 

kejuruteraan. Dengan kehadiran bunyi putih Gaussian, dinamik keadaan menjadi turun 

naik, tidak pasti dan maklumat tidak lengkap. Jadi, pengoptimuman dan kawalan 

sistem dinamik tersebut tidak akan memberikan penyelesaian yang memuaskan. Oleh 

itu, algoritma SA bagi keadaan-kawalan (SASC) dicadangkan supaya menggabungkan 

anggaran keadaan dan rekabentuk hukum kawalan untuk menyelesaikan masalah 

kawalan. Kemudian, penyelesaian optimum penapis Kalman lanjutan (EKF) 

diperbandingkan sebagai penyelesaian penanda aras. Selain itu, varian kaedah SA, 

iaitu SA bermomentum (SAM), kecerunan dipercepatkan Nesterov (NAG), dan 

anggaran momen penyesuaian (Adam), digunakan dalam algoritma SASC demi 

lelaran yang lebih baik. Sebagai penerangan, penggunaan kejuruteraan, iaitu sistem 

kereta-bandul terbalik, sistem empat tangki, dan pengayun elektrik Duffing, dikaji. 

Keputusan simulasi menunjukkan bahawa trajektori keadaan dan keluaran 

dianggarkan hampir dengan trajektori sebenar menggunakan hukum kawalan optimum 

yang direkabentuk. Dari keputusan ini, sudut kecondongan dan kedudukan kereta 

dapat dikawal di sekitar keadaan mantap melalui daya luaran yang optimum. Di 

samping itu, paras cecair dalam empat tangki dianggarkan secara optimum 

berdasarkan voltan optimum pam. Selanjutnya, fluks dan voltan induktor tak linear 

dikira secara optimum dengan voltan berpunca sinusoidal. Kecekapan dan ketepatan 

algoritma SASC dengan Adam amat dicadangkan. Kesimpulannya, algoritma SASC 

boleh digunakan untuk menyelesaikan masalah kawalan optimum stokastik tak linear 

masa diskrit dengan berkesan.
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CHAPTER 1 

INTRODUCTION 

1.1 General introduction 

Optimal control theory is a branch of applied mathematics and control engineering that 

uses mathematical optimization techniques to determine the optimal values of a set of 

control variables for minimizing the performance index over a dynamic system (Kirk, 

2004). In a control problem, a cost function consists of the state and control variables, 

and a dynamic system is a class of first-order differential equations (La Torre et al., 

2015). The main aim of solving the control problem is to optimize the cost function 

under the control efforts in which the system evolves toward stabilization. In recent 

years, optimal control has become a well-known research frontier area. Its 

contributions to real-world problems, both for deterministic and stochastic cases 

(Fleming and Rishel, 2012) in engineering, biology, medicine, finance, ecology, 

economics, and management, have been recognized. 

A discrete-time system is a signal processing entity that processes the discrete-

time signal (Baltar and Nossek, 2014). In the system, both the input and output are 

discrete-time signals. According to Neishtadt (2007), discrete-time is referred to the 

time in a set of integers. A dynamical system is considered nonlinear if it does not 

obey the superposition principle (Saat et al., 2017), which means its output is not 

strictly proportional to its input. In the real world, most systems are nonlinear. 

However, nonlinear systems are more difficult to analyse as they cannot be 

decomposed and solved independently. 

Moreover, optimization and control of a dynamical system, which is disturbed 

by random noises, are very challenging tasks. This is because in the presence of the 
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random effect of noises, the fluctuation behaviour arising would lead the dynamical 

system to an undesired solution. This issue has commonly happened in the real world, 

especially in engineering areas. The problem in such a stochastic dynamic system is 

commonly known as the stochastic optimal control problem (Kappen, 2008).  

In engineering applications, optimal control ensures a strategic approach to 

increase productivity and enhance the best practice of operations in engineering 

systems. Applying the optimal control in engineering can minimize redundant manual 

controls and reduce human errors that require large expenses. It also compensates for 

random disturbance, allowing engineering systems to produce a correct output even in 

the presence of disturbance (Nise, 2020). Therefore, the formulation of a mathematical 

model for studying stochastic systems is very crucial for control and decision-making 

problems in engineering.  

In particular, the linear quadratic Gaussian (LQG) model, which is a common 

mathematical model for studying the linear stochastic optimal control problem, is 

widely applied in dealing with real-world problems. The structure of the LQG model 

reveals the combination of the linear quadratic regulator (LQR) model and the Kalman 

filtering (KF) theory (Huerta et al., 2011) that provides a fundamental theory for 

solving the linear stochastic optimal control problem. Due to its simplicity, the KF 

theory is one of the most generally used approaches for tracking and estimation (Julier 

and Uhlmann, 1997). The KF theory has been the focus of extensive application and 

research since the publication of the famous paper by Kalman, which describes a 

recursive solution to the discrete data of the linear filtering problem (Kalman, 1960b). 

Since then, it has been widely used in many areas, particularly in autonomous 

navigation, which is largely upon the advancement of digital computing.  

1.2 Background of study 

The optimal control theory has a long history of more than 360 years (Sargent, 2000). 

However, it took off after the achievement of optimal trajectory prediction in 

aerospace applications in the early 1960s. In 1638, Galileo introduced two shaped 

problems, namely the catenary (Conti et al., 2017) and the brachistochrone (Nishiyama, 

2013). Newton solved these shaped problems for the first time in 1685, but the results 

did not publish until 1694. In 1696, Johann Bernoulli challenged his colleagues to 
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solve the brachistochrone problem, but Bernoulli published the solution in April 1697 

(Herrera, 1994). 

The competition sparked the interest of mathematicians in solving the 

problems of the catenary and the brachistochrone. The resulting ideas were collected 

in a book and Euler published this book in 1744. Euler generalized the problem as 

finding a curve within a given interval to minimize the cost function and the necessary 

conditions for optimality were provided (Fraser, 2005). Later, in 1755, Lagrange 

provided an analytical method based on the changes in the optimal curve, which led 

directly to the necessary conditions that were proposed by Euler. Thus, the result of 

the necessary condition was named the Euler-Lagrange equation.  

After that Legendre investigated the second variation in 1786. At the same time, 

Hamilton reconstructed the equation and introduced the function as the Hamiltonian 

function. In 1838, Jacobi introduced the Hamilton-Jacobi equation, which served as 

the basis of dynamic programming developed by Bellman over a century later 

(Sussmann and Willems, 1997). On the other hand, Weierstrass also discovered the 

excess function, which is the forerunner of the maximum principle of Bellman and 

Pontryagin.  

In 1957, Bellman proposed a new perspective on Hamilton-Jacobi theory 

called dynamic programming (Dreyfus, 2002). While McShane and Pontryagain 

extended the calculus of variations to handle control inequality constraints. In the 

1950s, Pontryagin outlined the necessary conditions for optimality in his famous 

principle of maximum. Later, Rudolf Kalman developed the formulation of the LQR 

and the KF in the 1950s (Kalman, 1960a; Bryson, 1996) to establish the modern 

control era.  

Stochastic optimal control is one of the active research areas in the control 

theory that deals with the existence of uncertainty in the observation and the 

randomness of noise disturbance in the dynamic system (Ahmed, 1973; Ahmed and 

Teo, 1974). The problem of stochastic optimal control is described as determining a 

set of admissible control to minimize an expected cost function over a general class of 

differential equations or difference equations in the presence of random disturbances 

(Adomian, 1985). In this situation, the random noise, which is known as the Gaussian 

white noise, affects the evolution of dynamic systems and the observation of state 

trajectories. 
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The state estimation, which is conducted by using the KF approach, is an 

important step in handling the stochastic dynamical system. By considering the errors 

of state and output, the KF approach provides the optimal state estimate for the linear 

dynamic systems, while the extended KF (EKF) approach is the common method used 

for estimating the state of nonlinear dynamic systems (Bryson and Ho, 1975). In other 

words, the state estimation problem can be defined as a stochastic optimization 

problem over the stochastic dynamic system. The aim is to obtain the optimal state 

estimate in which the sum of squares errors of state and output are minimized. With 

the state estimate, the optimal control law (Lewis et al., 2012) can be designed to 

minimize the performance index of the dynamic system.    

On the other hand, the stochastic approximation (SA) approach (Spall, 2005), 

which is also known as the stochastic gradient descent (SGD) method, is an efficient 

method for solving stochastic optimization problems. It was first proposed by Robbins 

and Monro (1951), and then Kiefer and Wolfowitz (1952) released a paper to discuss 

the use of the SA to the regression problem. Since the gradient descent, which was 

invented by Cauchy in 1947, converges to a local minimum quite slowly, this 

limitation can be addressed by using the SGD method. Nowadays, the SGD method is 

recognized as one of the famous optimization approaches in machine learning.  

Recently, the SA approach has been the central efficient and effective 

optimization method in machine learning, such as deep learning, supervised learning, 

unsupervised learning, and reinforcement learning (Sun et al., 2019). Nevertheless, the 

applicability of the SA approach in handling stochastic optimal control problems shall 

be further investigated as it can be used to minimize errors between the predicted 

results and the actual observation. Hence, in our study, the SA approach will be applied 

to estimate the state of dynamical systems, in turn, to design the optimal control law 

for solving discrete-time nonlinear stochastic optimal control problems. 

Moreover, some recent variants of the SA approach have been developed for 

solving stochastic optimization problems. The SA with momentum (SAM) replaces 

the current gradient with momentum, which is an aggregate of the gradient (Karim, 

2018), to update the weight instead of relying solely on the current gradient. Then, a 

similar update is implemented using Nesterov accelerated gradient (NAG), where the 

projected gradients are used. Subsequently, the adaptive moment estimation (Adam) 

that computes adaptive learning rates for each parameter is proposed. So, applying 

these variants of the SA approach, we want to identify the accuracy of these methods 
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for state estimation and the efficiency of the optimal control design when solving 

discrete-time nonlinear stochastic optimal control problems.   

1.3 Statement of problem 

In the presence of Gaussian white noise in dynamic systems, the state dynamics 

become fluctuate, and the entire state trajectory is uncertain. This behaviour arises 

obviously in stochastic optimal control problems. Since the Gaussian white noise has 

zero mean and finite variance, it is a common noise consideration in the simulation of 

stochastic optimal control problems compared with colour noise, which the mean and 

variance are unknown. When taking the expectation, the state propagation seems to be 

a deterministic state equation. However, without the complete state information, 

optimizing and controlling a dynamic system will not provide a satisfactory solution, 

and even the exact solution is impossible to obtain. Therefore, using the appropriate 

computational technique for solving the stochastic optimal control problem is 

becoming a must-use tool, especially under incomplete or partially complete state 

information (Lewis et al., 2012). Thus, an efficient computational approach shall be 

developed and proposed for solving the stochastic optimal control problem from a 

practical perspective. 

In past studies, the KF method has been applied for navigation, tracking, and 

estimation because of its simplicity and tractable. However, the application of the KF 

method to a nonlinear system can be more challenging. Since the KF method assumes 

that the system and observation model equations are both linear, this is not realistic in 

many real-life situations. In a nonlinear system, the linearization procedure is usually 

needed in deriving a filtering algorithm. The most common approach is to use the EKF 

approach. But the EKF approach requires the first-order derivative for the process 

model and the output model, which is costly, difficult to implement, and only reliable 

for systems that are almost linear on the time scale of the update intervals (Julier and 

Uhlmann, 1997). Moreover, using the nonlinear filtering theory to estimate the state 

dynamics would be computationally demanding and the design of the optimal control 

law is less accurate in a practical sense (Ahmed and Teo, 1974). Hence, an efficient 

computational algorithm is required to resolve these weaknesses.  
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Therefore, the study in this thesis aims to propose an efficient computational 

method of the SA for estimating the state dynamic and designing the optimal control 

in solving the discrete-time nonlinear stochastic optimal control problem. In our study, 

the iterative algorithm, which is called the SA for state-control (SASC) algorithm, is 

proposed for the state estimation and control law design. This algorithm only requires 

the initial value of the state error covariance matrix, unlike the KF approach needs to 

derive the equation of the state error covariance matrix. The SASC algorithm will 

include the SA variants, which are SAM, NAG, and Adam approaches, for handling 

nonlinear stochastic optimal control problems, and their accuracy and efficiency will 

be examined.  

1.4 Objectives of study 

The objectives of the study in this thesis are given as follows: 

(a) To propose the SASC algorithm for estimating the state dynamic and designing 

the control law for solving discrete-time nonlinear stochastic optimal control 

problems. 

(b) To compare the accuracy of the SASC algorithm with the EKF algorithm 

through mean square errors for solving discrete-time nonlinear stochastic 

optimal control problems. 

(c) To verify the efficiency of the SA variants, namely SAM, NAG and Adam 

approaches, in the SASC algorithm for solving discrete-time nonlinear 

stochastic optimal control problems. 

1.5 Scope of study 

In this study, an efficient computational approach of SA, which is called the SASC 

algorithm, is discussed for solving stochastic optimal control problems in engineering 

applications. The SA approach and the recent variants of the SA approach are further 

investigated to carry out the state estimation and to design the optimal control law. 

These SA approach variants are SAM, NAG and Adam. Three engineering application 

examples, which are the inverted pendulum-cart system, the four-tank system, and the 

Duffing electrical oscillator model, are studied for illustration. These problems are 
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defined as discrete-time nonlinear stochastic optimal control problems and are solved 

by using the SASC algorithm. The accuracy and efficiency of the SASC algorithm are 

compared with the EKF algorithm for verification.   

1.6 Significance of study 

This study is important and useful in various disciplines, particularly in engineering 

applications. Here, the engineering application is defined as the applied mathematical 

model that shows practical usage in engineering. The efficient computational approach, 

which satisfies the certainty equivalence property, is proposed in this study to solve 

discrete-time nonlinear stochastic optimal control problems. The methodology of the 

computational approach is discussed and the applicability of the computational 

approach in engineering applications is verified. In summary, the following 

contributions are aimed: 

(a) An efficient computational approach for solving nonlinear stochastic optimal 

control problems is proposed, where the SA approach is employed. This 

computational approach is named the SASC algorithm.  

(b) An improvement in the design of the control law through the SA updating rule 

is carried out for incorporating the state estimation. 

(c) The illustrative examples of the stochastic optimal control problem in 

engineering applications are studied, where the accuracy and efficiency of the 

SASC algorithm and its variants are proven. 

 

Here, the outcome of this study is expected to provide the optimal decision 

strategy for stochastic optimal control problems, which is very useful in many 

disciplines, particularly in engineering. For this purpose, three examples, which are 

the inverted pendulum cart system, four-tank system, and Duffing electrical oscillator 

model, are illustrated.  
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