
 

 
 
 
 
 
 

SYNTHESIS, CHARACTERIZATION AND ADSORPTION STUDIES OF DEEP-

EUTECTIC SOLVENT MOLECULAR IMPRINTED POLYMER FOR THE 

REMOVAL OF BISPHENOL A 

 

 

 

 

 

 

 

 

SYED ASIM HUSSAIN SHAH 

 

 

 

 

 

 

 

 

 

A thesis submitted in fulfillment of the requirement for the award of the Degree of 

the Master of Science 

 

 

 

 

 

 

 

 

Faculty of Applied Sciences and Technology 

Universiti Tun Hussein Onn Malaysia 

 

 

 

 

 

 

 

NOVEMBER 2022 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iii  

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

First and foremost, I would like to express my sincere gratitude to my supervisor, 

ChM. Dr. Saliza Binti Asman, for her tireless efforts and continuous guidance and 

support throughout this research. Besides that, I am also greatly indebted to my co-

supervisor, Dr. Syazwan Hanani Binti Meriam Suhaimy, for her advice, criticism and 

motivational support given to complete this research successfully. The cooperation 

given by my family, especially my late father, lecturers and staff in the Faculty of 

Applied Sciences and Technology, as well as fellow friends, in guiding me all the way 

to completing the project is also highly appreciated. Appreciation also goes to 

everyone involved directly or indirectly in the compilation of this thesis. 

  I would like to gratefully acknowledge Universiti Tun Hussein Onn Malaysia 

(UTHM) for research and encouragement to undertake the study of MSc in scince 

(chemistry). This research was supported by the Ministry of Higher Education 

(MOHE) through the Fundamental Research Grant Scheme (FRGS-Racer) 

RACER/1/2019/STG01/UTHM//2 for Research Acculturation of Early Career 

Researchers and assistance support from Universiti Tun Hussein Onn Malaysia 

(UTHM). 

 

 

 

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv  

 

 

 

 

ABSTRACT 

 

 

 

 

Molecularly imprinted polymer (MIP) is a class of powerful materials with promising 

selective molecule recognition abilities. However, the conventional MIPs have a 

relatively low binding capacity and selectivity. To improve this characteristic of MIP, 

the addition of deep eutectic solvent (DES) as a functional monomer in the 

polymerization process was studied to synthesize potential MIP. The study focuses on 

the synthesis, characterization, and adsorption behavior of deep eutectic solvent 

molecularly imprinted polymer (DES-MIP), molecular imprinted polymer (MIP), and 

hybrid deep eutectic solvent molecular imprinted membrane (HDES-MIP) for the 

selective removal of bisphenol A (BPA) from aqueous medium. The potential of DES 

in MIP was studied by synthesizing DES-MIP using DES functional monomer. DES 

was synthesized by mixing choline chloride (ChCl) and methacrylic acid (MAA) by 

ratio of 1:2. DES-MIP was then compared with conventional MIP synthesized by 

MAA as a functional monomer. Both DES-MIP and MIP were prepared by the free 

radical polymerization process via a bulk polymerization method. Prepared DES-MIP 

was then hybridized with cellulose acetate (CA) to obtain the HDES-MIP membrane. 

The characterization results of X-ray diffraction (XRD), Fourier transform infrared 

spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric 

analysis (TGA), and differential scanning calorimeter (DSC) confirmed the 

characteristics of synthesized DES-MIP, MIP and HDES-MIP. The DES-MIP has a 

higher selectivity for BPA (17.72 mg/g) than competing analogs, including bisphenol 

AP (9.78 mg/g), 2-naphthol (8.25), and 4-tertiary butyl-phenol (6.98 mg/g). The 

optimization parameters include adsorption pH, adsorption kinetics, adsorption 

isothermal, and thermodynamic studies were carried out. DES-MIP, MIP and HDES-

MIP followed Pseudo-second order and Langmuir isothermal models. According to 

reusability tests, the DES-MIP can be recycled five times without losing significant 

adsorption capacity. As a result, the addition of DES in the polymerization process 

improved the physical and chemical properties and enhanced the recognition capacity 

of MIP, thus affecting the adsorption behavior. 
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ABSTRAK 

 

 

 

 

Polimer pencetakan molekul (MIP) merupakan sejenis kelas bahan yang menakjubkan 

dengan jaminan kebolehan pengecaman terhadap molekul tertentu. Tetapi, MIP 

konvensional mempunyai kapasiti pengikat dan selektiviti yang rendah secara relatif.  

Untuk menambah baik ciri-ciri MIP, penambahan pelarut eutektik dalaman (DES) 

sebagai monomer berfungsi dalam proses pempolimeran telah dikaji untuk 

menghasilkan MIP yang baik. Kajian ini memfokuskan kepada penghasilan, pencirian, 

dan sifat penjerapan oleh pelarut eutektik dalaman polimer pencetakan (DES-MIP), 

polimer pencetakan molekul (MIP), dan pelarut eutektik hibrid dalaman membran 

cetakan molekul (HDES-MIP) sebagai penyingkiran khusus terhadap bisfenol A 

(BPA) daripada medium akueus. Potensi DES dalam MIP telah dikaji dengan 

menghasilkan DES-MIP dengan menggunakan kumpulan berfungsi DES. DES telah 

dihasilkan melalui campuran kolin klorida (ChCl) dan asid metakrilik (MAA) dengan 

nisbah 1:2. DES-MIP dibandingkan dengan MIP yang konvensional (dihasilkan 

dengan MAA sebagai monomer berfungsi). Kedua-dua DES-MIP dan MIP dihasilkan 

oleh proses pempolimeran radikal bebas melalui kaedah pempolimeran pukal. DES-

MIP yang disediakan kemudian digabungkan dengan selulosa asetat (CA) untuk 

memperoleh membran HDES-MIP. Hasil pencirian oleh alat pembelauan sinar X 

(XRD), Spektroskopi inframerah fourier transformasi (FTIR), mikroskop electron 

pengimbas (SEM), thermal gravimetric analyzer (TGA), dan differential scanning 

calorimeter (DSC) telah mengesahkan ciri-ciri DES-MIP, MIP dan HDES-MIP yang 

dihasilkan. DES-MIP mempunyai pengkhususan yang tinggi terhadap BPA (17.72 

mg/g) berbanding yang lain, seperti bisfenol AP (9.78 mg/g), 2-naftol (8.25), and 4-

tertiari butil-fenol (6.98 mg/g). Pengoptimuman parameter termasuk kajian penjerapan 

pH, penjerapan kinetik, penjerapan isotherma dan termodinamik telah dijalankan. 

DES-MIP, MIP dan HDES-MIP mengikuti model tertib pseudo kedua dan tertib 

isoterma Langmuir. Menurut kepada ujian kebolehgunaan semula, DES-MIP boleh 

diguna semula selama lima kali tanpa kehilangan kapasiti penjerapan yang banyak. 

Penambahan DES dalam proses pempolimeran menambah baik sifat-sifat fizikal dan 

kimianya dan meningkatkan kapasiti pengecaman MIP yang akan mempengaruhi sifat 

penjerapannya. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

Molecularly imprinted polymers (MIPs) have revolutionized and attracted attention as 

tailor-made adsorbents for specific recognition of target molecules (Hu et al., 2021). 

MIPs are synthetic polymers with biomimetic functionalities. MIPs are usually 

obtained through the polymerization of functional monomers around the target 

molecule (template) in a complementary fashion, bringing about an exceptional three-

dimensional network (Pratiwi et al., 2018). MIPs are less expensive than other 

purification techniques, e.g., coagulation (Eslami et al., 2020), biological treatment 

(Saravanan et al., 2021), catalytic oxidations (Wang et al., 2021), ozonation solvent 

extraction (Yang et al., 2020), and adsorption distillation (Liu et al., 2021). 

 MIPs are based on molecular recognition, which occurs naturally. The 

interaction between antibodies and antigens is one example. MIPs are precise for 

selective identification and binding of a given guest molecule (Huang et al., 2014). 

The extraordinary molecular interaction between monomer receptor and desired 

analyte is a result of MIPs well-designed molecular recognition. The synthesis of MIPs 

usually starts with the pre-assembly of monomers in the presence of template in a 

suitable soluble medium. The monomer is arranged around the template in a fixed 

position during the process, which is followed by copolymerization of crosslinker and 

initiation (Zhao et al., 2019). The template molecule is eliminated after polymerization 

leaving behind tri-dimensional structure with size, shape, and functional group 

complementary to the template molecule. 

 MIPs showed applications as separation materials for the analysis of various 

compounds, including drugs (Walshe et al., 1997), pesticides (Yang et al., 2006) an
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amino acids (Dinu & Apetrei, 2022). The MIP membrane is a specific detection 

technology that has been increasing in the last few years. Several articles have been 

published on the preparation of MIP membranes, showing specific permeability and 

separation for template/ligands such as cholesterol (Ciardelli et al., 2006), nucleotides, 

and various drugs (Trotta et al., 2005). The transport properties and applications of 

MIP membranes in sensor technology have also been investigated (Algieri et al., 

2014). 

Besides all the advantages, conventional MIPs are still facing the problem of 

low binding capacity and low selectivity (Arabi et al., 2020). Deep eutectic solvents 

(DESs) are emerging solvents gradually introduced as functional monomers in 

molecular imprinting (Jablonský et al., 2020). DESs are comprised of mixture of two 

or more constituents that have a low melting point as compared to their components 

(Wang et al., 2018). One component behaved as a hydrogen bond donor (HBD) while 

the other one acted as a hydrogen bond acceptor (HBA). These components are held 

together with each other by either hydrogen bond or van der Waals interaction. DESs 

possess excellent properties, such as functional capacity, low cost, and low toxicity 

(Fu et al., 2017). DESs enhance the aggregate of the imprinting site marking the 

selective adsorption capacity of the surface. 

Additionally, DESs have distinct properties, including easy preparation, low 

vapour pressure, and favourable biodegradability (Qin et al., 2019). The selectivity 

and adsorption capacity of target material is successfully enhanced by the introduction 

of DESs on the surface of molecular imprinted polymer (MIP) and this system is called 

deep eutectic solvent molecularly imprinted polymer (DES-MIP). DES-MIP showed 

good stability, excellent compatibility, improved selectivity, reusability, better 

imprinting factor, quick binding kinetics, and greater adsorption capacity. The 

excellent improvement of MIPs upon modification with DES is due to the controlled 

structure and homogeneity of the binding site (Wang et al., 2018). 

Bisphenol A (BPA) is an emerging organic, synthetic, and chemical 

intermediate used in certain plastics and epoxy resins (Fan et al., 2021). BPA is the 

most widespread endocrine disruptor which caused chronic health conditions related 

to the reproductive system (Shamhari et al., 2021), metabolic function, nervous 

system, immune function, growth, and development of progeny (Ma et al., 2019). The 

general population may directly or indirectly exposed to BPA through food, water, air, 

cosmetics, and thermal. Eventually, these products are biodegraded by sunlight and 
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converted into microplastics. Due to its non-biodegradability and resistance to 

chemical degradation, it is essential to remove BPA from the environment (Huang et 

al., 2017). 

In this study profoundly specific and proficient DES based on choline chloride-

methacrylic acid (ChCl-MAA) as a functional monomer was developed. The obtained 

DES was used as a functional monomer to produce (DES-MIP). A conventional MIP 

based on MAA monomer was also produced. The prepared DES-MIP was hybridized 

with cellulose acetate (CA) to obtain the hybrid DES-MIP membrane (HDES-MIP). 

 

 

1.2 Problem statement 

 

 

MIPs are synthetic polymers that contain artificial receptor sites for a specific target 

template. Many researchers have investigated MIPs for BPA (Alnaimat et al., 2019; 

Ardekani et al., 2020; Poliwoda et al., 2016; Y. Wang et al., 2019). Most of these 

studies used conventional functional monomers such as methacrylic acid (MAA), 

acrylamide (AAM) and 4-vinyl pyridine (4-PV). MIPs obtained through conventional 

monomers still face limitations. Poor selectivity, irregular shape, and slow mass 

transfer lead to poor binding capacity for the target template (Tian et al., 2018). 

The release of a wide range of chemical pollutants with potential toxicity into 

water is an ecological threat to humans. BPA is one of the major chemical 

manufactured worldwide due to the growing market of polycarbonates and epoxy 

resins (Huang et al., 2012). The estimated use of BPA was 7.7 million metric tons in 

2015 and is projected to reach 10.6 million metric tons by 2022. Commonly, BPA is 

used to synthesize polycarbonates, phenolics, and epoxies. Industrial wastes, effluents 

and household products are some of the common sources of pollution of BPA in the 

environment (Kwiatkowska et al., 2017). It is negligibly released into the environment 

mixed up with drinking water and food by contacting polycarbonates and resins, 

glassware, food cans, baby bottles, and storage buckets. 

BPA is responsible for causing tumors in humans, even taking a minor 

concentration every day. It is extremely important to remove BPA as the exposure 

leads to severe health and environmental effects (Corrales et al., 2015). BPA has been 

banned in the production of baby bottles along with any other food contact items for 

children under the age of three. The European Chemical Agency (ECHA) has 
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classified BPA as a chemical of very high concern. Recent rules have placed even 

more restrictions on the use of BPA that’s why food manufacturers are steadily looking 

for an alternative to eliminate BPA from their goods (Wassenaar et al., 2021). The 

European Commission approved a regulation in 2018 that restricted the use of BPA as 

a packing material (Zhang et al., 2020). The Specific Migration Limit (SML) per 

kilogram of food was reduced from 0.6 mg to 0.05 mg. Per body weight, 4 ug/kg was 

set as the new Tolerable Daily Intake (t-TDI). 

A new generation of functional DES monomers has some unique 

characteristics compared to traditional monomers, such as the creation of inclusion 

complexes by host-guest interaction DES forms a complex with the target analyte 

through various types of intermolecular interactions such as Van der Waals force, 

hydrophobic interactions, electrostatic affinity, dipole-dipole and hydrogen bond 

interaction during the imprinting Phases (Grecco et al., 2021). Thus, DES is the 

alternative approach that eliminates the drawbacks faced by using traditional 

monomers. 

 

 
1.3 Objectives of study 

 

 

The main objective of this study is to improve the selectivity and binding capacity of 

molecular imprinted polymer (MIP) by introducing a choline chloride/methacrylic 

base functional monomer. Meanwhile, the specific objectives are as follows: 

i. To synthesize and characterize the deep eutectic solvent molecular imprinted 

polymer (DES-MIP) for the removal of bisphenol A (BPA). 

ii. To prepare and characterize the hybrid DES-MIP membrane (HDES-MIP) for 

the removal of BPA. 

iii. To study the optimum parameters for DES-MIP and hybrid DES-MIP 

membrane (HDES-MIP) for the removal of BPA. 

 

 

1.4 Significance of study 

 

 

The conventional MIPs faced several problems, including low selectivity and low 

binding capacity. Application of new functional monomer for MIP enhanced 

selectivity and binding capacity for BPA. DES is an excellent choice as a functional 
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monomer for the preparation of DES-MIP due to less toxic, low cost and easy 

preparation made. Molecular imprinting technology (MIT) was revolutionized after 

the utilization of DES, which proved to be an effective source to overcome the 

drawbacks of traditional molecular imprinting. Factors like incomplete template 

removal, irregular shape and low binding capacity can be improved by the introduction 

of DES for the MIP synthesis. The proposed method for the synthesis of DES-MIP's 

remarkably enhanced binding capacity. Consequently, excellent template recognition, 

as well as adsorption capacity have been achieved.  

Additionally, the wide range of polarity of DESs makes it possible to construct 

analytical platforms for several compounds for which it has previously been 

impossible to do so due to solubility issues. For example, DESs have recently been 

employed as extraction solvents for the pre-concentration of pesticide residues in food 

and environmental samples, followed by instrumental analysis. Finally, DESs are non-

toxic and eco-friendly, making them desirable for use as green media in the creation 

of devices for the pharmaceutical, agrochemical, and food sectors. The advantages of 

the existence of high content functional groups in DES monomers provide excellent 

interaction with template molecules which tend to enhance the selectivity and affinity 

of DES-MIP. The effective extraction ability of DES-MIP is due to the presence of 

natural process action hydrogen bonding, hydrophobic nature, and electrostatic 

interaction (Li et al., 2015) 

 

 

1.5 Scope of study 

 

 

In order to achieve the research objectives, the scopes of study have been determined 

are: 

 

i. Synthesis of DES-MIP and DES-NIP by preparing a new functional monomer 

which is combination of choline chloride-methacrylic acid (ChCl-MAA) as a 

DES compound. 

ii. Synthesis of the conventional MIP and NIP as control by using methacrylic 

acid (MAA) as functional monomer. 

iii. Synthesis and characterization of hybrid deep eutectic solvent molecular 

imprinted polymer membrane (HDES-MIP). 
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iv. Evaluation of interaction between functional groups of DES, MIPs, NIPs and 

HDES-MIP was done by using Fourier transform infrared spectrometer 

(FTIR).  

v. Evaluation of morphology of synthesized MIPs, NIPs and HDES-MIP was 

analyzed by using a scanning electron microscope (SEM). 

vi. Evaluation of crystalline properties of MIPs and NIPs were carried out by using 

X-ray diffraction (XRD) analysis. 

vii. Determination of heating behavior of MIPs and NIPs was carried out by 

Differential scanning calorimetry (DSC). 

viii. Evaluation of thermal stability with respect to temperature was carried out by 

Thermogravimetric analysis (TGA) for MIPs and NIPs  

ix.  Evaluation of optimum parameters including pH, kinetic, isothermal and 

thermodynamic of MIPs and HDES-MIP was carried out by a batch adsorption 

experiment using UV-vis spectrophotometry.  

x. Determination of selectivity of MIPs and NIPs was carried out by comparing 

the adsorption of structurally similar molecules. 

xi. Evaluation of reusability of MIPs was carried out by performing five 

adsorption cycles. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Molecularly imprinted polymer (MIPs) 

 

 

2.1.1 Overview of MIPs 

 

 

Molecular imprinting is an outstanding approach for the synthesis of polymers with 

high selectivity and specificity for the target molecule, which involves the attachment 

of polymerizable functional monomers around the template molecules (Bates et al., 

2017). Molecularly imprinted polymers (MIPs) have a specific ability to determine 

and separate specific molecules (target template) from other molecules that contain 

similar structures. Due to specific recognition, easy preparation and low-cost MIPs 

find their application in the areas of purification, separation, biosensing, catalysis, drug 

delivery, and degradation (Chen et al., 2016).Three major approaches are used to 

synthesize MIPs (i) covalent, (ii) non-covalent, and (iii) semi-covalent. 

The noncovalent imprinting approach is frequently used to prepare MIPs due 

to its flexibility and ease of handling. The noncovalent interactions involve Van der 

Waals forces, hydrogen bonding and π–π interactions (Zhang et al., 2021). Most 

common functional monomer for this type of MIP is methacrylic acid (MAA), which 

interacts through hydrogen bonding. The imprint molecules interact with the MIPs 

during the imprinting procedure and the rebinding process via non-covalent 

interactions. Simple and economical experimental procedures of noncovalent 

approach allow a wide range of functional monomers to interact with almost every 

kind of template available commercially (Martín-Esteban, 2016). A major limitation 

of this approach is the formation of complexes with multiple template–monomer 

stoichiometries. Such complexes may have binding sites with different affinities. 

However, the simplicity of operation, kinetics of binding removal and versatility of the 
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non-covalent approach have made it more popular in the recent past (Arabi et al., 

2020). Figure 2.1 shows the schematic synthesis of MIPs. 

 

 

 

Figure 2.1: Schematic preparation of MIP by non-covalent approach (Gao et al., 

2020) 

 

The covalent approach was first introduced by Wulff and coworkers (Wulff, 

1977). It is the second most popular approach used for the synthesis of MIPs. The 

covalent approach indicates that the cleavage of the covalent reversible bond occurs to 

remove MIPs from the resulting matrix, which is reformed upon rebinding of the 

analyte (Parisi et al., 2019). The covalent bonds must be cleaved for the template to be 

extracted via chemical interaction, resulting in well-defined binding cavities with 

complementary steric and functional topography to the target molecule. The exact 

stoichiometry of the template-monomer complexes allows the preparation of polymers 

with binding groups exclusively located in the imprinted cavities, decreasing the 

possibility of non-specific interactions. There are some limitations associated with the 

covalent approach for MIPs. The application of the covalent approach is restricted to 

a limited number of functional monomers and templates such as alcohols, amines, 

aldehydes, ketones and carboxylic acids (Marfà et al., 2021). Moreover, template-

monomer complex formation before polymerization is attributed to higher effort for 

template cleavage after MIP synthesis. The repeated use and slow rebinding kinetics 

are due to the need to establish the covalent bond for target recognition  
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The covalently BPA-imprinted polymer was prepared using BPA as a template, 

dimethacrylate as the monomer, ethylene glycol dimethacrylate (EGDMA) as the 

crosslinker, and 2,2’-azobis (isobutyronitrile) as the initiator. The polymerization was 

polymerized by UV initiation by using chloroform as a solvent. The BPA was 

separated from the resulting polymer by hydrolysis of the ester bonds with aqueous 

sodium hydroxide, generating the carboxylic acid residues in the polymer. The ester 

bonds of the obtained polymer were hydrolyzed to generate carboxyl group-based 

binding sites. The resulting polymer exhibited a high affinity for BPA. Table 2.1 shows 

the advantages and disadvantages of the three approaches used in the synthesis of MIPs 

(Ikegami et al., 2004). 

 

Table 2.1: Summary of different approaches used for the synthesis of MIPs 

 

Imprinting type Benefits Limitations References 

Covalent Provide homogeneous 

binding sites with a definite 

shape. 

Polymerization ensures the 

maximization of the number 

of specific binding sites. 

The removal of template 

and rebinding is very 

difficult. 

(Hasanah et al., 

2021; Yi et al., 

2013) 

Semi-covalent Random distribution and 

association of functional 

monomers to template 

molecules.  

There may be template 

bleeding when 

hydrolysis is unable to 

remove the template. 

(Hasanah et al ., 

2021) 

 

 

Non-covalent Experimental simplicity. 

Easy removal of the 

template under mild 

conditions. 

Fast template binding and 

release kinetics. 

 

The weak average 

affinity of the binding 

site. 

Formation of 

nonselective binding 

sites because of random 

incorporation of  

(Torres-Cartas 

et al., 2020) 

 

 

 

The semi-covalent approach is a protocol for producing MIPs that combines 

the covalent and noncovalent approaches. This alternative approach can provide a 

higher imprinting factor and a faster adsorption value.  (Zhang et al., 2020) applied a 

semi covalent approach for MIP to fabricate the mesoporous fluorescent molecularly 

imprinted sensor for detecting BPA from food samples. To achieve rapid identification 

of BPA, an imprinting precursor1-(benzofuran-2-yl)-2-propylaminopentane (BPAP) 

was formulated via thermally reversible isocyanate bonding that worked as an 

alternative template molecule for BPA detection. 
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2.2 Synthesis of MIPs 

 

 

MIPs are commonly synthesized by free radical polymerization (FRP). The other 

components involved in the synthesis process are functional monomer, template, 

crosslinker and initiator. 

 

 

2.2.1 Free radical polymerization (FRP) 

 

 

FRP is widely used in the industrial preparation of polymers. FRP-prepared materials 

have distinct functionalities. As a result, approximately 50% of the world's polymer 

production is typically carried out using this method (Marfà et al., 2021). MIPs are 

often synthesized by FRP which is the most important method for their production. In 

the presence of a suitable solvent, the reaction is carried out under the normal condition 

of temperature and pressure. 

Typically, the synthesis technique is carried out in bulk or solution at mild 

reaction temperatures lower than 80 °C. This range of temperature is quite favorable 

for wide range of functional groups and templates (Kouki et al., 2022). Typically, the 

polymerization reaction happens quite quickly. A popular azo-initiator used in this 

reaction is azo N-N′-bis isobutyronitrile (AIBN), which can initiate a reaction 

thermally or chemically. Previous studies demonstrated that photo-initiated 

polymerization at low temperature decreases the kinetic energy of the pre-

polymerization complex which increased the stability and allowing greater binding 

capacity and specificity than thermal initiated polymerization which requires 

temperatures higher than 40 °C.  

As shown in Figure 2.2, free FRP consists of three steps: (i) initiation, (ii) 

propagation, and (iii) termination. Initiation is the first step in which the formation of 

free radicals occurs by the decomposition of an initiator under heating. The second 

major step is the propagation, where the addition of a monomer to a growing macro 

radical contributes to the growth of the chain. The final step is termination, which takes 

place in two ways. First is the recombination of two macro radicals and secondly, the 

disproportionation that gives the double bonds C=C and C-H at the end of the chain of 

polymer (Datta & Włoch, 2019).  
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