Search for collections on Eprints Thesis Repository

Modelling of tenant’s behavior information characterizations for credit scoring using logistic regression in Malaysia

Ling, Kim Sia (2023) Modelling of tenant’s behavior information characterizations for credit scoring using logistic regression in Malaysia. Masters thesis, Universiti Tun Hussein Onn Malaysia.

[img]
Preview
Text
24p LING KIM SIA.pdf

Download (478kB) | Preview
[img] Text (Copyright Declaration)
LING KIM SIA COPYRIGHT DECLARATION.pdf
Restricted to Repository staff only

Download (335kB) | Request a copy
[img] Text (Full Text)
LING KIM SIA WATERMARK.pdf
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

In Malaysia,themortgageapplicationsofthelowincomegroupareusually rejected bybanksandfinancialinstitutionsastheyhavepoorcreditscoresdue to toolittleorevennocredithistory.Therefore,theynormallyrentaproperty, buttheirrentalpaymenthistorydoesnotaccountableinthemortgage applications. Thisstudyaimstoreducethecreditunscorableoflowincome group withlimitedcredithistory.Inthisstudy,thelogisticregressionisapplied to computethecreditscoreoftenantsbasedontheircharacteristics,without relying onthetenant’scredithistory.Thepenalizedmaximumlikelihood estimation withridgeregressionisutilizedtofindtheparametersofthelogistic regressionmodelastheexistingseparationintrainingdata.Theinitial9factors considered affectingtenants’creditscoreweregender,age,maritalstatus, monthly income,householdincome,expense-to-incomeratio,numberof dependents, previousmonthlyrentandnumberofmonthslaterentalpayments. The maritalstatusfactorwasthenremovedfromthelogisticregressionmodel as itisinsignificanttothemodel.Meanwhile,k-foldcross-validationwithGrid Search wasappliedtodeterminetheappropriateregularizationstrengthvalue for maximumlikelihoodestimation.Themainfactorsofthetenant’scredit score arethenumberofmonthslatepayment,gender,expense-to-incomeratio, previousmonthlyrentandage.Besides,thereisnounderfittingoroverfitting in theproposedcreditscoringmodel.Meanwhile,theaccuracyoftheproposed tenant’screditscoringmodelontestingdatais0.90.Lastly,agraphicaluser interfacewasdevelopedfortenant’screditscoring

Item Type: Thesis (Masters)
Subjects: H Social Sciences > HG Finance
Depositing User: Pn Sabarina binti Che Mat
Date Deposited: 23 Apr 2024 07:37
Last Modified: 23 Apr 2024 07:37
URI: http://eprintsthesis.uthm.edu.my/id/eprint/86

Actions (login required)

View Item View Item